
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Ludvig Digné

Towards Quantum-Resilient
Authentication: Implementing Hybrid
Signatures in FIDO2 Authenticators

Master’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Tjerand Silde
Co-supervisor: Magnus Ringerud, Sigurhjörtur Snorrason, and
Trond Peder Hagen
June 2024

Ludvig Digné

Towards Quantum-Resilient
Authentication: Implementing Hybrid
Signatures in FIDO2 Authenticators

Master’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Tjerand Silde
Co-supervisor: Magnus Ringerud, Sigurhjörtur Snorrason, and Trond
Peder Hagen
June 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Towards Quantum-Resilient Authentica-
tion: Implementing Hybrid Signatures in
FIDO2 Authenticators

Digné, Ludvig

Submission date: June 2024
Main supervisor: Silde, Tjerand, NTNU
Co-supervisors: Ringerud, Magnus, PONE Biometrics,

Snorrason, Sigurhjörtur, PONE Biometrics, and
Hagen, Trond Peder, PONE Biometrics

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title: Towards Quantum-Resilient Authentication: Implementing Hybrid
Signatures in FIDO2 Authenticators

Student: Digné, Ludvig

Problem description:

FIDO2 aims to replace password-based authentication with passkeys using public
key cryptography. PONE Biometrics’ OFFPAD, a credit card-sized device with a
fingerprint reader, implements this protocol. Users authenticate to online services
using a fingerprint-unlocked passkey, shifting authentication to possession-based
(physical device) rather than knowledge-based (passwords). Public key cryptography
systems are threatened by the advent of quantum computers which is why NIST is
standardizing quantum-secure algorithms. The purpose of this project is to investigate
how CRYSTALS-Dilithium, a quantum-resistant digital signature algorithm, can be
implemented on resource-constrained devices in the context of FIDO2.

Approved on: 2024-02-16
Main supervisor: Silde, Tjerand, NTNU
Co-supervisors: Ringerud, Magnus, PONE Biometrics,

Snorrason, Sigurhjörtur, PONE Biometrics, and Hagen,
Trond Peder, PONE Biometrics

Abstract

Quantum computers get more powerful every year, and if a sufficiently
large quantum computer is ever built, it would render all public key
cryptography used today insecure. To ensure the security of future
communication, the National Institute of Standards and Technology
(NIST) in the United States is standardizing post-quantum cryptography
(PQC). CRYSTALS-Dilithium and Falcon are two of the digital signature
algorithms being standardized, and these are based on lattice problems
believed to be computationally difficult to solve even for a large quantum
computer. These algorithms must be integrated into the protocols that are
being used every day. This work focuses on how the FIDO2 authentication
standard, which aims to replace passwords with public key cryptography,
can be made quantum-secure. We implement an authenticator capable
of PQC that demonstrates efficient authentication against a test server
using a hybrid signature construction. The results show that FIDO2
can migrate towards PQC, but there are challenges. These challenges
include, but are not limited to, deciding whether to use hybrid vs. pure
PQC, and determining the optimal structure of a hybrid construction for
security, performance, and ease of implementation. We finally discuss
trade-offs concerning algorithm choices, the impact of secure elements,
and protection against side-channel attacks.

Sammanfattning

Kvantdatorer blir kraftfullare för varje år som går, och om en tillräckligt
stor kvantdator någonsin byggs skulle den göra all offentlig nyckelkryp-
tografi som används idag osäker. För att säkerställa säkerheten i framti-
da kommunikation standardiserar National Institute of Standards and
Technology (NIST) i USA kvantesäker kryptografi (PQC). CRYSTALS-
Dilithium och Falcon är två av de digitala signaturalgoritmerna som
standardiseras, och dessa är baserade på gitterproblem som anses vara
beräkningsmässigt svåra att lösa även för en stor kvantdator. Dessa algo-
ritmer måste integreras i de protokoll som används varje dag. Detta arbete
fokuserar på hur FIDO2-autentiseringsstandarden, som syftar till att er-
sätta lösenord med offentlig nyckelkryptografi, kan göras kvantesäker.
Vi implementerar en autentiserare kapabel till PQC som demonstrerar
effektiv autentisering mot en testserver genom användning av en hy-
brid signaturkonstruktion. Resultaten visar att FIDO2 kan migrera mot
PQC, men det finns utmaningar. Dessa utmaningar inkluderar, men är
inte begränsade till, beslut om att använda hybrid eller ren PQC, och
att avgöra den optimala strukturen för en hybridkonstruktion för säker-
het, prestanda, och enkelhet i implementeringen. Slutligen diskuterar vi
prestandaavvägningar gällande algoritmval, påverkan av säkra element
(secure elements), och skydd mot sidokanals-attacker.

Preface

The work presented in this thesis was conducted in the department of
Information Security and Communication Technology of the Norwegian
University of Science and Technology (NTNU), and the Background
section of this thesis builds on my specialization project [Dig23] that was
conducted during the autumn of 2023.

I took my bachelor’s degree from Chalmers University of Technology
in Sweden in industrial engineering and management, and felt towards
the end of those studies an attraction towards more technical subjects,
specifically cyber security. This led to my pursuing a master’s degree
in Norway. During these two years, I feel I have truly learned a lot
about a field I find genuinely interesting and have met great people along
the way. I purposefully chose this master’s project, knowing it would
be challenging, because I wanted to learn more about the technologies
involved, but also because it would be that much more rewarding than
choosing a project with the intent to “coast by”.

I want to express my sincere gratitude towards my main supervisor,
Tjerand Silde, for his excellent guidance, and whose passion for cryp-
tography is inspiring. This work was done in collaboration with PONE
Biometrics, and I also want to extend my gratitude to the folks there for
the opportunity and the great interest you all have shown in my work.
A special thanks to Sigurhjörtur at PONE Biometrics for his technical
guidance and his work on the server side of the project, without whom
this thesis would not be as complete.

Lastly, I want to thank my family, and girlfriend, for their tireless
support and never-ending encouraging words.

Contents

List of Figures xi

List of Tables xiii

List of Listings xv

List of Acronyms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Scope . 3
1.3 Limitations . 3
1.4 Research Questions . 4
1.5 Contribution . 4
1.6 Related Work . 5

1.6.1 NIST Standardization Work 5
1.6.2 Hybrid Signatures . 5
1.6.3 Provable PQC Security in FIDO2 6

1.7 Outline . 6

2 Background 7
2.1 The OFFPAD . 7

2.1.1 Overview of the OFFPAD . 7
2.1.2 Passkeys vs. Passwords . 8

2.2 FIDO2 . 10
2.2.1 Overview of FIDO2 . 10
2.2.2 Terminology . 11
2.2.3 CTAP . 12
2.2.4 WebAuthn . 12
2.2.5 Registration Procedure . 12
2.2.6 Authentication Procedure . 14

2.3 Digital Signatures and Dilithium . 15
2.3.1 Introduction to Digital Signatures 15

vii

2.3.2 Lattice Cryptography and Short Integer Solution 17
2.3.3 The Dilithium Algorithm . 18

3 Methodology 23
3.1 Overview . 23
3.2 Implementation Steps . 24
3.3 Tools and Resources . 25

3.3.1 STM32 Nucleo-64 Development Board 25
3.3.2 Zephyr OS . 25
3.3.3 C Programming Language . 25
3.3.4 FIDO2 Testing Server . 25
3.3.5 Libraries . 26

3.4 Performance Measuring . 26

4 Proposed Solution 29
4.1 Requirements . 29
4.2 Architecture . 29
4.3 Transmission and Reception of Data 30

4.3.1 UART . 30
4.3.2 Data Reception . 31
4.3.3 Data Transmission . 32

4.4 Concise Binary Object Representation (CBOR) 33
4.4.1 CBOR Encoding and Decoding 33

4.5 CTAP Commands . 38
4.5.1 High-level Overview . 39
4.5.2 authenticatorGetInfo . 40
4.5.3 authenticatorMakeCredential 41
4.5.4 authenticatorGetAssertion . 46

5 Performance and Discussion 51
5.1 Performance . 51
5.2 Discussion . 52

5.2.1 Hybrid vs. Pure PQC . 53
5.2.2 Hybrid Constructions . 53
5.2.3 Performance Trade-offs Between Algorithms 54
5.2.4 Secure Elements and Side-Channel Attacks 55
5.2.5 Challenges for FIDO2 . 55
5.2.6 Relevance to the UN Sustainable Development Goals 56

6 Conclusion and Future Work 57
6.1 Research Questions . 57
6.2 Conclusion . 58

6.3 Future Work . 59
6.3.1 HID Implementation . 59
6.3.2 Bluetooth . 59
6.3.3 Implementing and Attacking Hybrid Constructions 59

References 61

Appendices

A Benchmarks 67
A.1 Key Generation Times . 67
A.2 Signing Times . 68
A.3 Signature Sizes . 70

List of Figures

2.1 Degrees of security for different authentication methods [SH23]. 10
2.2 Components of the FIDO2 standard and the communication protocols

involved [SH23]. 11
2.3 WebAuthn registration flow [Wor22]. 13
2.4 WebAuthn authentication flow [Wor22]. 14
2.5 High-level overview of signature generation and verification [CMRR23]. 16
2.6 Two-dimensional lattice with two possible bases [MR09]. 17
2.7 The basic Zero-Knowledge Proof of Knowledge (ZKPoK) system on which

Dilithium is built. The value of β̄ affects the probability that False is
not sent [Lyu20]. 19

2.8 Simplifed template [BDK+21] of the Dilithium signature algorithm, after
performing a Fiat-Shamir transform of the ZKPoK system presented in
Figure 2.7. 20

4.1 Overview of the components involved in the development environment to
perform a full FIDO2 authentication flow. 30

4.2 Example of a decoded authenticatorMakeCredential command. Key
1 is the clientDataHash. Key 2 is information on the RP. Key 3 is
information on the user, with id being a RP-specific account identifier.
Key 4 is pubKeyCredParams, consisting of algorithms supported by the
RP. 42

4.3 Structure of an attestation object, and is what is returned upon an
authenticatorMakeCredential command [FID18]. 43

4.4 COSE key structure for the ES256 algorithm (ECDSA w/ SHA256). . . 44
4.5 Chosen COSE key structure for the Dilithium-2 algorithm. 44
4.6 Chosen hybrid COSE key structure for ECDSA and Dilithium-2 keys. . 44
4.7 Example of a decoded authenticatorGetAssertion command used in

this work. 47
4.8 Example of a hybrid signature used in this work, showing the hybrid

construction used. Each size field is a two-byte integer value indicating
how the hybrid signature should be split. 48

xi

List of Tables

2.1 Key and signature sizes for Dilithium instantiated with different NIST
security levels [BDK+21; Ope]. 21

4.1 Structure of an authenticatorMakeCredential-command in CTAP. Not
all parameters are required. 34

4.2 Brief overview of the structure of an attestation object which gets returned
upon an authenticatorMakeCredential command. For further details
on its structure, see Figure 4.3. 37

4.3 The first byte of a CTAP message indicates what operation is being
requested. 39

4.4 Structure of an authenticatorMakeCredential command used in this
work. 41

4.5 Structure of an authenticatorGetAssertion command used in this work. 47
4.6 Structure of the object that gets returned upon on an authenticatorGet-

Assertion command. Contains the signature to be verified for authenti-
cation. 47

5.1 Key generation and signing times, along with signature sizes, for classical
ECDSA, Dilithium-2, and the hybrid version. ECDSA’s public key size
is set to 64 as it consists of an X and Y coordinate, each being 32 bytes.
The hybrid public key is then calculated as the sum of 64 and the public
key size of Dilithium-2. 51

5.2 Key generation and signing times, along with signature and public key
sizes, for Falcon-512 and its hybrid version with ECDSA. The hybrid
public key size here is calculated in the same way as in Table 5.1. 52

A.1 Key generation times (in ms) for the different algorithms. Here, Dil-2 =
Dilithium-2, Fal-512 = Falcon-512. 67

A.2 Signature generation times (in ms) for the different algorithms. 68
A.3 Signature sizes (in bytes) for ES256 and Falcon-512, the only two com-

posite algorithms in this work with varying signature sizes. 70

xiii

List of Listings

3.1 Code used for benchmarking. 27
4.1 UART initialization. 31
4.2 Callback function for reading incoming data. 31
4.3 Processing of message queue. 32
4.4 Example of a simple transmission. 32
4.5 Example of a full transmission sequence for a CTAP message. 32
4.6 CDDL file for generating C code for decoding an authenticator-

MakeCredential command. The symbols ’?’ and ’+’ are CDDL syntax
and means ’optional’ and ’one or more’, respectively. 34

4.7 zcbor command for generating source code and header files related
to CBOR decoding of an authenticatorMakeCredential command.
The -t flag is used to choose which type to expose in the CDDL
scheme, in this case make_credential_request. Flags –oc and –oh
refer to the path to the generated C and header file, respectively.
Lastly, –oht is the path to the generated types header. 35

4.8 Generated structs in make_credential_request_types.h as a result of
running the previous command (Listing 4.7) with the CDDL scheme
defined in Listing 4.6. 35

4.9 Function declaration in make_credential_request_decode.h as gener-
ated by zcbor for decoding a make_credential_request. 36

4.10 Call to a zcbor-generated function for decoding a CBOR message. . 36
4.11 CDDL scheme used by zcbor to generate code for CBOR encoding an

attestation object. The first three lines assigns a byte-key to each field. 37
4.12 zcbor command for generating source code and header files related to

CBOR encoding an attestation object. 37
4.13 Struct for an attestation object in attestation_object_types.h as

generated by zcbor. 38
4.14 Function signature in attestation_object_encode.h for encoding

an attestation object as generated by zcbor. Before the function is
called, the struct attestation_object should have its fields initialized. 38

xv

4.15 High-level overview of process_ctap_command(), the function respon-
sible for performing the appropriate operations based on the received
CTAP command. 39

4.16 CDDL scheme used by zcbor to generate C code for CBOR encoding an
authenticatorGetInfo reply. The first two lines assigns a byte-key
to each field. 40

4.17 Transmission of an authenticatorGetInfo response containing CBOR
encoded information of the device. 41

4.18 Global array containing algorithms supported by the authenticator.
Preferability goes from most preferred (lowest index) to least preferred
(highest index). The macros used here are the same as defined in
Listing 4.15. 45

4.19 Struct used for storing a generated credential. mbedtls_mpi is a
library specific (mbedtls) data type with mpi meaning multi precision
integer. 45

4.20 Generation of ECDSA and Dilithium-2 keypairs in the hybrid case.
Dilithium-2 uses the API provided by the liboqs library, and ECDSA
the one provided by mbedtls. Here, generate_ecdsa_keypair() is
not a function signature exposed by mbedtls, but rather a wrap-
per function created in this work to factor out some code from the
process_ctap_command() function. The private key for each respec-
tive algorithm is stored in its appropriate field in the Credential
struct. 46

4.21 Generation of a hybrid signature, i.e., an ECDSA signature concate-
nated with a Dilithium-2 signature, with each signature prepended
with a two-byte integer value indicating the length of the individual
signature. 48

List of Acronyms

API Application Programming Interface.

CBOR Concise Binary Object Representation.

CDDL Concise Data Definition Language.

COSE CBOR Object Signing and Encryption.

CTAP Client to Authenticator Protocol.

ECC Elliptic Curve Cryptography.

ECDSA Elliptic Curve Digital Signature Standard.

HID Human Interface Device.

JSON JavaScript Object Notation.

MCU Microcontroller Unit.

MFA Multi-Factor Authentication.

NIST National Institute for Standards and Technology.

NSA National Security Agency.

OFFPAD Offline Personal Authentication Device.

OQS Open Quantum Safe.

OS Operating System.

PKC Public-Key Cryptography.

PoC Proof of Concept.

xvii

PQC Post-Quantum Cryptography.

RP Relying Party.

RTOS Real-Time Operating System.

SCA Side-Channel Attack.

SE Secure Element.

SIS Short Integer Solution.

SNDL Store Now, Decrypt Later.

TLS Transport Layer Security.

UART Universal Asynchronous Receiver-Transmitter.

W3C World Wide Web Consortium.

WebAuthn W3C’s Web Authentication.

ZKPoK Zero-Knowledge Proof of Knowledge.

Chapter1Introduction

The introduction chapter aims to motivate the relevance of this work. It begins by
describing the problem that justifies the need for the research, followed by a definition
of the research scope. The chapter also outlines the limitations of the work and
presents the research questions along with the contributions of the study. Finally, an
outline of the remainder of the thesis is provided.

1.1 Motivation

Authenticating against online services is something many of us do every day of
our lives, often done using knowledge-based methods such as passwords. Ideally,
these passwords are unique for each service and have a high degree of randomness.
However, this idealistic scenario is infrequent due to its inconvenience. This avoidance
of inconvenience often results in the proliferation of low-quality and frequently reused
passwords, rendering systems vulnerable to adversaries who exploit the presence of
passwords stored in databases. To increase both convenience and security, there has
been efforts to come up with alternative authentication methods. One of these is the
FIDO2 standard developed by the FIDO Alliance, an authentication mechanism based
on Public-Key Cryptography (PKC). The fundamental premise is that a user will
only have to authenticate locally on a device, called an authenticator, by some means,
such as biometric methods or a PIN. Afterward, the device unlocks a private key
stored on it and uses it to authenticate against the service holding the corresponding
public key. This increases convenience and security. However, it is all based on public
key cryptography, which in turn is based on either the factorization problem or the
discrete logarithm problem. Simply put, the first problem is about the hardness of
factorizing large integers, and the second one is about finding x in gx ≡ A (mod p),
given g, A, and a prime number p. These two problems are infeasible to solve on
a classical computer with today’s algorithms. Quantum computers, on the other
hand, are a different beast. A sufficiently large quantum computer could solve these
two mathematical problems that public key cryptography is built upon by virtue of

1

2 1. INTRODUCTION

Shor’s algorithm [Sho99], effectively rendering encryption and authentication based
on these insecure.

The number of years until there is a cryptographically relevant quantum computer
is an inherently difficult prediction to make, although many experts seem to agree
that the probability it will become a reality within the nearest coming decades is
non-negligable [MP21]. Although it is not here today, there still exists a threat in
which individuals and larger actors can intercept data encrypted with quantum-
vulnerable cryptography during its transmission over the internet. Subsequently, the
intercepted data could be decrypted at a later point when the interceptor obtains
access to a quantum computer. This phenomenon is called Store Now, Decrypt Later
(SNDL). Although this may not be a concern for most data, there are secrets with
multi-decade shelf lives that must remain confidential for an extended period of time,
such as medical records, trade secrets, or documents related to national security
[JMM+22]. Moreover, organizations, such as software vendors, face threats from
quantum adversaries if they fail to transition to quantum-secure systems. Quantum
adversaries possess the ability to compromise the classical signature schemes utilized
by vendors to validate software updates, enabling them to inject malicious code like
spyware or backdoors into the vendor’s software and distribute it as legitimate [TSZ22].
In the same vein, authentication systems such as FIDO2 that aim to increase security
by replacing passwords with cryptography-based authentication mechanisms must
adapt to the looming threat of quantum computers. The authentication system is built
on classical digital signatures to authenticate a user, which means that a quantum
adversary would be able to break the authentication system. Considering these
concerns, the urgency of migrating to quantum-secure systems becomes increasingly
evident [JMM+22].

Migration of IT systems is often a complex process, which is why much of the
literature on the subject urges organizations to begin their transition to quantum-safe
systems as soon as possible [AWG+21; JMM+22]. Organizations in which digital
signatures play an important role can make the transition from quantum-vulnerable
systems to quantum-secure ones easier by utilizing hybrid digital signatures. Rather
than replacing existing algorithms with novel, less studied algorithms believed to
be secure against quantum computers, the classical algorithm is combined with
the new one into a single construction. This makes it so that an adversary must
break both algorithms and the overall system security is lower bounded by the
strongest algorithm in the construction. In other words, even if the Post-Quantum
Cryptography (PQC) algorithm is identified as flawed, the security by the classical
algorithm is still guaranteed. This means that a systems security is only potentially
increased during a migration, never decreased [JMM+22; GKP+23].

In light of the looming threat of quantum computers, National Institute for

1.2. RESEARCH SCOPE 3

Standards and Technology (NIST) has put much effort into standardizing algorithms
deemed secure against quantum computers. The CRYSTALS-Dilithium [BDK+21]
digital signature algorithm, which will be referred to simply as Dilithium hereafter,
is one of the algorithms selected for standardization. In order to secure FIDO2
authentication against future quantum adversaries, such that the migration towards
a world less reliant on passwords can continue, this thesis explores the integration of
a hybrid signature consisting of a classical Elliptic Curve Digital Signature Standard
(ECDSA) signature and the new Dilithium signature into FIDO2 authentication.

1.2 Research Scope

This work implements an authenticator capable of FIDO2 authentication using
quantum-secure hybrid digital signatures. The implementation is simplified and does
not reflect the complexity of a production grade authenticator. Instead, it serves as
a Proof of Concept (PoC) for experimenting with PQC in a FIDO2 context.

Furthermore, while there are various methods to achieve hybridization, this
implementation focuses solely on a specific approach: concatenation of classical
and PQC signatures. Additionally, although multiple PQC algorithms are being
standardized, this work primarily centers on Dilithium. For comparison and discussion
purposes, the PQC signature algorithm Falcon [FHK+18] is also benchmarked
alongside Dilithium.

This work only covers implementation on the Nucleo-L476RG development board
with an Arm Cortex M4 processor, and the algorithms used in this work have not been
optimized for this specific environment but have been employed from pre-existing
libraries.

1.3 Limitations

Some restrictions have been deliberately placed to ensure that the work can be
completed within the allocated time frame of 21 weeks. These are essential for
striking a balance between depth and breadth.

4 1. INTRODUCTION

ID Limitations
L1 The code will have emphasis on functionality over performance,

particularly on the client side, where the majority of the development
will be done. Although efforts will be made to select appropriate data
structures where there is an obvious choice to do so from a performance
perspective, the overarching architectural decisions will not prioritize
performance. This approach, while conducive to achieving the functional
goals within the given scope, may lead to a less performance-optimized
system, deviating from conventional practices often associated with
embedded systems.

L2 Secure communication channels over the internet, typically done using
TLS, is a fundamental and integral part of internet communications and
serves to provide encryption and integrity checks of the data sent
between parties. The proposed solution assumes that such a secure
channel is established between the client and the service being
authenticated against.

L3 The code developed serves only as a PoC of a quantum-secure FIDO2
solution. In no way, shape or form, should it be used in a production
environment without having undergone rigorous scrutiny and testing in
its intended environment.

1.4 Research Questions

The following research questions have been derived from the presented motivation,
research scope, and limitations:

RQ1 With respect to contemporary technology and research, is the FIDO2 standard
ready to migrate to quantum-secure authentication?

RQ2 What does a feasible quantum-secure solution for FIDO2 authentication entail?

1.5 Contribution

This work demonstrates the implementation of a PoC authenticator capable of
performing quantum-secure authentication in FIDO2, and further explores various
aspects of hybridization and general challenges related to quantum-securing FIDO2.
While similar work has been performed previously, such as in [GKP+23], this work
differs in that it implements a different type of hybridization (concatenation) while
also going into more detail of the actual implementation with a significant focus on
Client to Authenticator Protocol (CTAP), covering aspects such as serialization and
CBOR Object Signing and Encryption (COSE) key structures. Furthermore, this
work provides an analysis of the integration challenges and performance trade-offs

1.6. RELATED WORK 5

between algorithms associated with PQC FIDO2 authentication, offering further
perspective on this important matter.

1.6 Related Work

A significant amount of research is being conducted in the field of PQC and its
application to systems like FIDO2. NISTs work of standardizing PQC algorithms has
laid the groundwork for other research that has shown the security of PQC in FIDO2,
as well as the implementation of PQC algorithms like Dilithium in constrained
environments for a FIDO2 context. Some of this research will now be presented
further.

1.6.1 NIST Standardization Work

Although opinions on the arrival timeline of a sufficiently large quantum computer
vary widely, it remains crucial to establish standardized algorithms resistant to
quantum threats well in advance. NIST has been at the forefront of evaluating
and standardizing various post-quantum algorithms since 2016. This initiative has
involved a competition to solicit algorithm candidates. After several rounds of
scrutiny of the submissions, the remaining four algorithms are Kyber, Dilithium,
Falcon, and SPHINCS+ [Nat23]. Kyber is a key establishment algorithm, and the
latter three are digital signature algorithms. Of the three digital signatures, Dilithium
and Falcon are the most efficient ones and are both based on the hardness of lattice
problems. Although Dilithium has been selected as the primary one, Falcon should
be used by applications that require smaller signatures than what Dilithium provides.
The SPHINCS+ algorithm is slightly larger and slower than the other two, but it
was also selected because it is valuable as a backup, simply because it is based on a
different mathematical problem than the other two [Nat22a].

1.6.2 Hybrid Signatures

To smoothen the transition into a quantum-secure digital landscape, hybrid cryptosys-
tems have been proposed. Hybridization methods exist for, e.g., digital signatures.
In [BHMS17], different methods are proposed to combine classical digital signatures
and post-quantum ones to form a hybrid construction. The fundamental idea is
to provide protection against future quantum adversaries while also being secure
against classical attackers. In [GKP+23], the authors implemented Dilithium as
part of a hybrid construction (specifically “strong nesting”) proposed in [BHMS17].
However, in contrast to the authors of [BHMS17], the authors of [GKP+23] explored
the feasability of achieving this under the constraints of embedded hardware. It was
performed on an ARM Cortex M4 based development board and showed how it can
be applied in the context of passwordless authentication.

6 1. INTRODUCTION

1.6.3 Provable PQC Security in FIDO2

In [BCZ23], the authors hold that the most recent version of the FIDO2 standard
appears to be “post-quantum ready”. They initially prove that FIDO2 is provably
secure against classical adversaries. Thereafter, using the same model used to prove
the previous, they prove that FIDO2 is also secure when instantiated with PQC-
primitives. To add support for authentication using PQC-primitives, they propose
to only extend the list of supported algorithms of the server (Relying Party (RP)),
and explicitly allow hybrid schemes as exemplified in Subsection 1.6.2.

1.7 Outline

The remainder of this thesis consists of the following five chapters:

Chapter 2: Background introduces the necessary background knowledge for
the thesis. This includes terminology and explanations of the OFFPAD, FIDO2
standard, digital signatures and the Dilithium algorithm.

Chapter 3: Methodology outlines the steps taken to implement the final
solution. It provides insights into the tools utilized and offers explanations for
their selection and the motivations behind their usage. Additionally, it outlines the
methodology employed for benchmarking the implemented algorithms.

Chapter 4: Proposed Solution presents the solution, i.e., how the development
board was made into an authenticator supporting hybrid signatures for FIDO2
authentication. The implementation of CTAP covers a large portion of this chapter.
Code listings for important code sections are shown and explained.

Chapter 5: Performance and Discussion presents benchmarks of the im-
plemented solution, showing metrics such as time for key generation and signing, as
well as key and signature sizes for the different algorithms. The discussion section
delves into the nuances of hybridization and examines performance trade-offs among
different algorithms. Additionally, it explores the significance of Secure Elements
(SEs) and Side-Channel Attacks (SCAs) as it pertains to authenticators capable of
PQC. Lastly, the chapter addresses some challenges associated with quantum-securing
FIDO2.

Chapter 6: Conclusion and Future Work summarizes the thesis and tries
to answer the research questions. Ideas for future work are proposed.

Chapter2Background

This chapter aims to give the reader the necessary background knowledge to un-
derstand the research area and to follow the rest of this work. The work covers
implementation of a FIDO2-authenticator capable of performing quantum-secure
hybrid digital signatures, which is why the work begins with explaining the OFF-
PAD authenticator and the benefits of such devices. Next, the FIDO2 standard
is explained in more detail, guiding the reader through its components and the
processes of registration and authentication. The chapter concludes with an in-depth
overview of digital signatures, with particular emphasis on the PQC digital signature
algorithm, Dilithium.

2.1 The OFFPAD

The reader will now be introduced to how the possession of a physical device, i.e., an
authenticator, can be used for authentication, rather than using the knowledge of a
piece of data, i.e., passwords.

2.1.1 Overview of the OFFPAD

The Offline Personal Authentication Device (OFFPAD) is a device developed by
the Norwegian cyber security startup PONE Biometrics. It is a credit card-sized
device with a fingerprint reader that enables its users to authenticate against online
services by virtue of the FIDO2 standard being implemented on the device [Pon]. The
OFFPAD and FIDO2 are two separate entities and are being developed independently
of each other, but combining these two is what enables biometric authentication
against online services. This effectively replaces passwords, and the user does not
have to enter a string of characters to authenticate, but rather press their fingertip
against the device’s fingerprint reader. This is achieved by the use of PKC and so
called passkeys. The first time a user wants to authenticate against a service using
the the OFFPAD, they must first register the device with the service. On a high level,
this means that the device generates a key pair and sends the public key to the online

7

8 2. BACKGROUND

service which stores it, while the private key is stored locally. When the user wants
to authenticate, the online service sends a challenge derived from a random nonce
and the context, i.e., the user and the service. The user then authenticates locally
with his fingerprint or with a PIN used as backup, which unlocks the corresponding
private key used to sign the challenge and authenticate the user. This authentication
mechanism is enabled by the client and server implementing their part of the FIDO2
standard [SH23].

2.1.2 Passkeys vs. Passwords

The OFFPAD functions as a replacement for passwords and Multi-Factor Authen-
tication (MFA) by using passkeys, which are key pairs of a single private key and
a single public key. The public key is stored on the online service’s end, and the
private key is stored locally on the device. The combination of these is used for
authentication, and the process is explained in more detail in Subsection 2.2.1 on
FIDO2.

The use of passkeys for authentication has several advantages over passwords,
which is the authentication mechanism that people are most familiar with. The
fundamental premise of passwords is to have a shared secret between the user and
the service against which it wishes to authenticate. Due to this, we say that this
authentication mechanism is knowledge-based. The user enters the shared secret,
and the service checks whether the entered credential matches the one it has stored
in its database for that particular user. Ideally, this shared secret possess a high
degree of randomness such that it is difficult to brute-force a user’s credentials, but
it should also be unique for each service to mitigate the consequences of a potential
database breach on a service. The combination of unpredictability and uniqueness of
passwords imposes large expectations on a user who should remember many different
complicated credentials.

Authentication using passkeys on the other hand, is possession-based [GSN+20],
that is, the user has to be in possession of a physical device to authenticate. For the
OFFPAD, this is a combination of the device itself, and a valid fingerprint or PIN.
Such a PIN is stored locally on the device, is not connected to any external service,
and is only used to gain access to passkey credentials. One important benefit of
passkeys is therefore less risk exposure in case a service’s database(s) are breached. In
a knowledge-based authentication system, an adversary may gain access to passwords.
However, in possession-based authentication systems utilizing passkeys, the adversary
may gain access to public keys, which are rendered useless without the corresponding
private key, which is stored locally on the device. In addition, passkeys are less
exposed to phishing attacks; the most common form of cyber crime [GTJA17], in
which an adversary will impersonate a reputable actor in order to get the user to

2.1. THE OFFPAD 9

enter their credentials for what the user thinks is a trustworthy actor, e.g. by spoofing
a web site. The resistance to phishing is achieved by the fact that passkeys only work
on the websites they are registered with, making it so a user can not be tricked into
authenticating on a deceptive site [Goo23]. Even if the user does sign a challenge
coming from a fraudulent actor, this does not reveal anything of value, e.g., a secret
key, to the attacker.

In recent years, there has been an effort to add an additional layer of security
on top of passwords to compensate for their vulnerabilities, this is known as MFA.
Smartphones are typically used to provide the second factor. However, this involves
extra work for the user who must perform an extra step to authenticate, as well as
having the device offering the second factor with them at the time of authenticating.
Studies have shown users find this an inconvenience [SSKC14]. It has also resulted in
the phenomenon known as MFA fatigue, which opens up for social engineering attacks.
Due to the many MFA notifications a user may receive, the attacker hopes that you
do not pay as much attention to the ones prompted by him so that you will enter
the credentials necessary to authenticate against an otherwise secure environment
[Tak22]. The OFFPAD, utilizing passkeys, is designed to provide local authentication
making it MFA on its own, effectively eliminating the attack vector posed by MFA
fatigue [KMWK23].

In addition to the security differences between passwords and passkeys, there
are different degrees of security within passkeys themselves. On the OFFPAD, the
passkeys are always bound to the device and never leave. In other implementations,
the passkeys may be synced between a user’s different devices. One example of this
is Google Password Manager, in which a user’s generated passkeys may be synced
between their Android devices signed in to the same Google account [Goo23]. Apple
is doing something similar where a user’s passkeys may be synced between their
Apple devices using the iCloud keychain. This type of passkey syncing can be used
by an administrator to manage which passkeys are synced to which devices, and
this can be beneficial in a business setting where one might want to manage the
authorization levels between different roles [App23]. However, this syncing exposes a
security vulnerability in which passkeys may be intercepted if proper encryption and
security measures are not put in place. This particular vulnerability is absent on the
OFFPAD by virtue of the passkeys always being bound to the device.

10 2. BACKGROUND

Figure 2.1: Degrees of security for different authentication methods [SH23].

2.2 FIDO2

With the reader armed with the knowledge of passkeys, it is now time to introduce
the protocols involved to make these a reality and how authentication using them
works in practice.

2.2.1 Overview of FIDO2

FIDO2 is an open standard based on PKC developed by the FIDO Alliance [FID23b]
to pave the way for passwordless authentication using passkeys. FIDO2 is an umbrella
term that encompasses specifications for W3C’s Web Authentication (WebAuthn)
and Client to Authenticator Protocol (CTAP), which together enable passwordless
authentication [FID23a]. The two primary areas in which it offers benefits are in
security and convenience; security because only the public key leaves the device which
provides phishing resistance, and convenience because of its possession-based nature
which lifts the burden of knowledge-based credentials of the user. FIDO2 is device
independent and allows users to leverage common devices, such as the OFFPAD, to
authenticate against online services. Another example of a device form using FIDO2
for authentication are USB-sticks, as being developed by Yubico [Yub23].

2.2. FIDO2 11

Figure 2.2: Components of the FIDO2 standard and the communication protocols
involved [SH23].

2.2.2 Terminology

To better understand the workings of FIDO2, we first introduce some terminology
established by the FIDO Alliance for the different components involved. FIDO2
authentication is built around the two sub-protocols WebAuthn and CTAP, and
involves the different parties listed below.

– Relying Party (RP). The online service the user wishes to authenticate
against. It registers and authenticates users by storing the public key created
by the user and issuing a challenge for the user to sign [Wor22].

– Client. An intermediary party (e.g., a web browser) between the authenticator
and the RP that is responsible for the communication between them [Wor22].

– Authenticator. A device capable of cryptographic operations that can register
a user with a RP and later assert possession of the private key associated with
a public key stored by the RP. This is done by the authenticator signing
the challenge issued by the RP with the private key corresponding to that
public key. We distinguish between roaming authenticators and platform
authenticators. A roaming authenticator, e.g., the OFFPAD, can be used
with different client devices, i.e., the hardware device on which the client runs.
Platform authenticators, on the other hand, are bound to a specific client
device; think of it as a “trusted device” [Wor22].

12 2. BACKGROUND

2.2.3 CTAP

CTAP allows the client to communicate with the authenticator, which enables commu-
nication between the authenticator and RP. FIDO2 uses CTAP2, a slight modification
of CTAP1, but the term CTAP will hereafter be agnostic as to whether it denotes
CTAP1 or CTAP2. It is an application layer protocol and is responsible for setting up
a secure communication channel between the client and the authenticator. Without
it, any application may try to request a challenge response from the authenticator.
For security reasons, it is desired that access to the authenticator’s Application
Programming Interface (API) is restricted only to the intended applications [FID18;
BBCW21].

2.2.4 WebAuthn

WebAuthn is an API developed by the World Wide Web Consortium (W3C) and the
FIDO Alliance and is what allows RPs to register and authenticate users using PKC
instead of passwords. Upon registering a device with a RP, the RP must provide
data that binds the user to a passkey that will be generated. These data include
identifiers for the user and the RP. This is so that each of the user’s passkeys is
associated with a single RP. The RP will then call the WebAuthn API to prompt
the user to generate a passkey, and send the public key to the RP who will store it
[Web23]. This process, as well as the authentication process, is described in more
detail in Section 2.2.5 and Section 2.2.6 below.

2.2.5 Registration Procedure

The registration is the process in which the user, the user’s client (with access to at
least one authenticator), and the RP work together to create a passkey credential
and associate it with the user’s RP account. This (typically) involves a test of user
verification which must be passed in order to complete the process. It is passed by
authenticating locally on the authenticator [Wor22], which, in the context of the
OFFPAD, involves scanning your fingerprint or entering a valid PIN. The steps below
give an overview of the registration flow.

2.2. FIDO2 13

Figure 2.3: WebAuthn registration flow [Wor22].

0. A user enters a username, after which the client initiates a request to register
an authenticator on behalf of the user.

1. The RP creates an instance of PublicKeyCredentialCreationOptions and
returns it to the client. It contains information about the user, the RP and the
type of credential desired.

2. The client application searches for and locates the authenticator. It then
forwards the user information, RP information, and clientDataHash which is
a hash of the serialized client data, including the challenge, to the authenticator.

3. User verification is done by having the user authenticate locally on the device.
This effectively gives the authenticator permission to generate a new passkey
and credential ID, as well as attestation data.

4. An attestationObject containing the generated public key, credential ID,
and attestation data, is sent to the client application.

5. The public key and credential data are put in a ClientDataJSON object, and
together with attestationObject, is sent to the RP.

6. After receiving the data, the RP performs a series of validation checks. If
successful, RP securely stores the public key, associating it with the user and
the authentication characteristics from the provided attestation data. This
enables subsequent authentication using the private key associated with the
public key sent to the RP [Wor22; Yub24b].

14 2. BACKGROUND

2.2.6 Authentication Procedure

The authentication process serves to authenticate the user against the RP and can
only be performed after the user has undergone registration. The user and the client
(with access to at least one authenticator) work together to prove to the RP that
the user possesses the private key corresponding to a previously registered public
key. The only actions necessary from the user are to provide its username and to
authenticate locally.

Figure 2.4: WebAuthn authentication flow [Wor22].

0. User enters username and requests to authenticate, after which the client
initiates a request to authenticate on behalf of the user.

1. The RP creates an instance of PublicKeyCredentialRequestOptions and
returns it to the client. It contains the fields challenge and allowCredentials.
The first is a random value generated by the RP that will be signed, the latter
contains a list of previously registered credentials that may be used to perform
the authentication.

2. The client hashes the client data into clientDataHash and sends it to the
authenticator along with the RP ID.

3. The authenticator finds the credential matching the RP ID and prompts the
user to authenticate locally. The authenticator then creates an assertion by
signing authenticatorData | clientDataHash with the private key generated
during account during registration.

4. The authenticator returns authenticatorData and signature to the client.

2.3. DIGITAL SIGNATURES AND DILITHIUM 15

5. The client forwards the authenticatorData and the signature to the RP,
together with clientDataJSON which contains JavaScript Object Notation
(JSON)-serialized data passed to the authenticator by the client to generate
the credential.

6. The RP conducts a series of verification checks, including a verification of the
received signature. If all verification checks are passed, the user is successfully
authenticated [Wor22; Yub24a].

2.3 Digital Signatures and Dilithium

The reader will now be introduced to the concept of a digital signature, that is,
how pencils and ink are swapped out for zeroes and ones. Then, the PQC digital
signature algorithm Dilithium is explained in more detail.

2.3.1 Introduction to Digital Signatures

A digital signature is a cryptographic primitive, serving as an electronic equivalent to
a written signature, and is used to provide the assurance that the claimed signatory
signed the message. In addition, it also provides data integrity, i.e., assurance that
the data have not been tampered with after signing, as well as non-repudiation, i.e.,
assurance that an entity cannot deny previously signed data [CMRR23; JMV01].
Digital signature schemes commonly see use in cryptographic protocols that provides
various services including entity authentication, as seen in the FIDO2 standard
[FID15].

Digital signature algorithms include two main processes, namely signature gener-
ation and signature verification. A signatory will generate a signature on the data,
and the verifier will verify the authenticity of the signature. Digital signatures build
on PKC, and each signatory has a private and public key and is the owner of that
key pair. A signatory generates a signature using its private key and the verifier
checks if the signature is valid with the corresponding public key. If validated, it
proves that the message was signed by the claimed party and that the data has not
been tampered with [CMRR23].

16 2. BACKGROUND

Figure 2.5: High-level overview of signature generation and verification [CMRR23].

Definition 2.1. (Digital signature scheme) A digital signature scheme Σ consists
of three algorithms (Σ.KeyGen, Σ.Sign, Σ.Verify), with message space m ∈M and
signature space σ ∈ S:

– Σ.KeyGen() is a probabilistic key generation algorithm that returns a secret
signing key sk and public verification key pk.

– Σ.Sign(m, sk) is a probabilistic signature generation algorithm that takes a
message m ∈M and a secret key sk as inputs and returns a signature σ ∈ S.

– Σ.Verify(m, σ, pk) is a deterministic verification algorithm that takes a message
m ∈ M , a signature σ ∈ S and a public key pk as inputs. It returns true or
false. If it returns true, we say that the algorithm accepts, otherwise we say
that the algorithm rejects the signature σ on the message m.

It is required that Σ.Verify(m, pk, Σ.Sign(m, sk)) = 1 for any honestly generated
pair Σ.KeyGen()→ (sk, pk).

We say that a digital signature scheme is secure if it is existentially unforgeable
against chosen-message attacks (EUF-CMA)1 [BH23].

1If an attacker, given the ability to obtain signatures on as many chosen messages as they want,
can then produce a new message (not seen before) and generate a valid signature for it that verifies
under the public key, then the digital signature scheme is not EUF-CMA secure.

2.3. DIGITAL SIGNATURES AND DILITHIUM 17

2.3.2 Lattice Cryptography and Short Integer Solution

The Dilithium digital signature algorithm is based on lattice cryptography, a branch
of cryptography that involves the use of lattices. A single lattice is a set of points
in n-dimensional space with a periodic structure. More formally, given n linearly
independent vectors b1, ..., bn ∈ Rn, the lattice generated by them is the set of all
integer linear combinations of the basis vectors, as given by

L(b1, . . . , bn) =
{

n∑
i=1

xibi : xi ∈ Z
}

The vectors b1, . . . , bn make up the basis of the lattice. The figure below illustrates
the same two-dimensional lattice generated by two different bases.

Figure 2.6: Two-dimensional lattice with two possible bases [MR09].

What makes lattices interesting for PQC is that mathematical problems can be
constructed from them that are thought to be computationally difficult even for
quantum computers [MR09]. One of these problems is the Short Integer Solution
(SIS) problem, which is what the Dilithium algorithm is based on. Informally, SIS
asks, given many uniformly random elements of a large finite additive group, find a
sufficiently “short” non-trivial integer combination of these elements such that they
sum to zero. The problem is parameterized by positive integers n and q that define
the group Zn

q , a positive real 0 < βSIS < q, and a number m of group elements.

Definition 2.2. (Short Integer Solution (SISn,q,βSIS ,m)) Given m uniformly random
vectors ai ∈ Zn

q , forming the columns of a matrix A ∈ Zn×m
q , find a non-zero integer

vector z ∈ Zm of norm 0 < ∥z∥ ≤ βSIS such that

fA(z) := Az =
∑

i

ai · zi = 0 ∈ Zn
q

Two constraints are worth pointing out. First, without the constraint on ∥z∥,
Gaussian elimination could be used to find a solution. The problem states that it

18 2. BACKGROUND

is hard to find short such solutions. Secondly, it is necessary for 0 < βSIS < q for
SIS to be hard, otherwise z = (q, 0, . . . , 0) ∈ Zm would be a valid, although trivial,
solution.

A drawback with schemes based on traditional SIS described above is that they
tend not to be efficient enough for practical application. An approach used to avoid
this inefficiency is to use lattices that possess extra algebraic structure [LPR10]. This
is why Dilitihum uses a variant of SIS called module-SIS with polynomials from Rq as
entries, rather than integers from Zq. The definition is the same as above except with
Rq rather than Zq. If the ring Rq has dimension d (a power of two), and the matrix
has dimension n′ over Rq, then the lattice will have dimension n′ × d. However, a
matrix with dimension n over Zq will have a lattice of dimension n. Computing over
Rq is more efficient and takes time O(n′d log d) rather than O(n2), and an element in
Rq can be represented by d elements but still be equivalent to a matrix of dimensions
d× d, effectively saving a factor d. It should be noted that n′ × d should be close to,
but never less than, n. Also, for Dilithium, d = 256 and n′ ∈ {3, 4, 5}. The security
level is only dependent on the total dimension of the matrix, regardless if it is over
Rq or Zq. This can be exemplified by the tool lattice-estimator on Github [Alb24;
APS15].

2.3.3 The Dilithium Algorithm

The design of the Dilithium scheme prioritized four key criteria [BDK+21], with sim-
plicity in secure implementation concerning randomness and constant-time operations
being the first, given the impracticality of expecting expert-level implementations
universally. Secondly, the Dilithium scheme employed conservative parameters, con-
sidering long-term security and analyzing the applicability of lattice attacks from a
perspective favorable to potential attackers. Thirdly, the total size of public key plus
signature had to be minimized as many applications require transmission of both of
these. Finally, the scheme had to be modular so that it was easy to vary the security.

Scheme Walkthrough

We present a high-level overview of how Dilithium works in practice. We first present
the zero-knowledge proof system on which Dilithium signatures are built. The prover
wants to convince the verifier that he knows short values s1 and s2 that satisfy the
public relation. The available public information is a uniform matrix A, and the
value t = As1 + s2. The first step of the protocol consists of the prover sampling
bounded masking values y1 and y2 and sending a commitment ω = H(Ay1 + y2) to
the verifier. The second step is for the verifier to send a challenge c to the prover.
The final step consists of the prover adding the mask to the product of the challenge
and the secret and sending the response if z1 and z2 are appropriate. This last step
is known as rejection sampling and its purpose in this case is to output z1 and z2

2.3. DIGITAL SIGNATURES AND DILITHIUM 19

values that do not leak the secrets s1 and s2. If (z1, z2) := False, the protocol will
restart [Lyu20].

The prover must prove that he knows s1 and s2 that satisfy As1 + s2 = t, where
the coefficients of s1 and s2 fall into a particular range (ideally [β], but [β̄] for some
β̄ a little larger than β is also valid) [Lyu20]. The following is the basic ZKPoK
system on which Dilithium is built.

Private information: s1 ∈ [β]m, s2 ∈ [β]n
Public information: A ∈ Rn×m

q , t = As1 + s2 ∈ Rn
q

Prover Verifier

y1 ← [γ + β̄]m

y2 ← [γ + β̄]n

ω := H(Ay1 + y2)
ω

c← C
c

z1 := cs1 + y1

z2 := cs2 + y2

if ∥z1∥∞ /∈ [β̄]m or ∥z2∥∞ /∈ [β̄]n :
then (z2, z2) := False

(z1, z2)

Accept iff ∥z1∥∞ ∈ [β̄]m
and ∥z2∥∞ ∈ [β̄]n

and H(Az1 + z2 − ct) = ω

Figure 2.7: The basic ZKPoK system on which Dilithium is built. The value of β̄
affects the probability that False is not sent [Lyu20].

The transformation of this ZKPoK system into a digital signature scheme is
done through a Fiat-Shamir transform [FS86], where rather than the challenge being
generated by the verifier, the challenge is created as a hash of the message to be
signed and the first message ω of the prover, along with the public key. We will now
look at a simplified version of how the three operations key generation, signature
generation, and signature verification are performed.

20 2. BACKGROUND

Gen
1: A←$ Rn×m

q

2: s1 ←$ [β]m
3: s2 ←$ [β]n
4: t := As1 + s2
5: return (pk = (A, t), sk = (A, t, s1, s2))

Sign(sk, M)
1: z := False
2: while z := False do
3: y1 ←$ [γ + β̄]m
4: y2 ←$ [γ + β̄]n
5: c := H(M, Ay1 + y2, pk)
6: z1 := cs1 + y1
7: z2 := cs2 + y2
8: if ∥z1∥∞ /∈ [β̄] or ∥z2∥∞ /∈ [β̄]:
9: z := False

10: return σ = (z1, z2, c)

Verify(pk, M, σ = (z1, z2, c))
1: if ∥z1∥∞ ∈ [β̄] and ∥z2∥∞ ∈ [β̄] and c = H(M, Az− ct, pk):
2: return True
3: return False

Figure 2.8: Simplifed template [BDK+21] of the Dilithium signature algorithm,
after performing a Fiat-Shamir transform of the ZKPoK system presented in Figure
2.7.

Key Generation. The key generation algorithm generates a k × ℓ matrix A
with polynomials in the ring Rq = Zq[X]/(Xn + 1) as entries. Afterwards, secret
vectors s1 and s2 are sampled. These are secret for anyone but the signer. Finally, the
second part of the public key is calculated as t = As1 + s2. All algebraic operations
in this scheme are assumed to be over the polynomial ring Rq.

Signature Generation. The signing algorithm begins with generating a
masking vectors y1 and y2. Afterwards, the challenge c is generated, after which
the masking vectors are added to the product of the challenge and the secret. A
rejection sampling step is then performed to keep the secret values from leaking. If
the z-values do not meet the necessary criteria, the protocol is restarted.

Verification. The verifier accepts the signature as valid if ∥z2∥∞, ∥z2∥∞ ∈ [β̄]
and c is the hash of M, Az− ct, and pk.

2.3. DIGITAL SIGNATURES AND DILITHIUM 21

In the full scheme, computational efficiency is enhanced by utilizing either the
higher or lower bits of specific elements.

Key and Signature Sizes of Dilithium

Dilithium can be instantiated for three different NIST security levels, namely levels
2, 3, and 5, where security level 5 offers the highest security. This naturally results
in different key and signature sizes, as illustrated in the table below.

NIST Security Level 2 3 5
Output Size (Bytes)

Public Key 1312 1952 2592
Secret Key 2528 4000 4864
Signature 2420 3293 4595

Table 2.1: Key and signature sizes for Dilithium instantiated with different NIST
security levels [BDK+21; Ope].

For the remainder of this work, “Dilithium-2” will refer to the Dilithium algorithm
with security level 2, while “Dilithium” will refer to the algorithm in general.

Chapter3Methodology

This chapter provides an overview of the implementation process in this work,
detailing the steps taken to achieve a PoC PQC-capable FIDO2 authenticator.
Furthermore, the chapter presents the tools and resources utilized in the project,
including the rationale behind these choices. These tools and resources encompass
hardware, programming language, testing environments, and libraries. Lastly, the
performance metrics used to evaluate the implementation and the measurement
method are presented.

3.1 Overview

This work aims to show how a quantum-secure digital signature algorithm like
Dilithium can be used in FIDO2 authentication to provide quantum-secure authenti-
cation. The task then becomes implementing an authenticator with PQC-capability
on a development board. It is not enough that the development board (client side)
can create (and sign with) quantum-secure cryptographic primitives, but it must also
be supported by the RP (server side). A FIDO2 testing server already developed by
PONE Biometrics will be used as the RP, but will have to be modified to support
Dilithium. This is made possible by implementing a relevant PQC-library. The ma-
jority of the implementation effort lies in implementing CTAP and PQC-capabilities.

The most important FIDO2 functionality to implement on the development board
are the CTAP-commands authenticatorGetInfo, authenticatorMakeCredential,
and authenticatorGetAssertion. The latter two will initially be implemented to
support an already established cryptographic algorithm, specifically ECDSA. Only
once authentication with ECDSA is working will support for Dilithium-2 be built in.
With Dilithium support built in, the whole authentication flow should be quantum-
secure, at which point performance testing will be done. Key performance metrics
include key generation time, signing time, and signature sizes. This will be performed
for ECDSA, Dilithium-2, as well as for a hybrid construction of the two. In addition

23

24 3. METHODOLOGY

to Dilithium-2, another PQC algorithm being standardized, Falcon, will also be
benchmarked to provide further context for discussion. The Falcon algorithm can
be instantiated for NIST security levels 1 and 5, and this work utilizes Falcon-512,
which corresponds to NIST security level 1. From here on, “Falcon-512” refers to the
Falcon algorithm with NIST security level 1, while “Falcon” refers to the algorithm
in general.

3.2 Implementation Steps

Below follows a more detailed review of the necessary implementation steps. Note
that it will only contain what are deemed the most critical steps, and will by no
means be an exhaustive list.

1. Set up a functioning development environment that contains the necessary
tools to get started. Zephyr’s own Getting started guide [Zep24a] is followed
for this. To confirm that the environment is set up correctly, we flash (upload)
a simple program to the board and see if it works as expected. Zephyr comes
with a number of sample programs that demonstrate basic functionality.

2. Create functionality for the board to read and output data over serial. This
will serve as the foundation for receiving CTAP-commands from the client
(browser), and transmitting the appropriate response back to the client, for it
to forward to the server.

3. Implement getAuthenticatorInfo. Upon receiving an authenticatorGetInfo
request, the board should return a static response containing Concise Binary Ob-
ject Representation (CBOR)-encoded data with information of the device. This
information includes, among other parameters, which algorithms it supports
for authentication.

4. Implement authenticatorMakeCredential for registration. Upon receiving an
authenticatorMakeCredential request, the board should create a credential
and create an attestation object as a response. The attestation object has
three fields; authData (authenticator data), fmt (attestation statement format
identifier), and attStmt (attestation statement).

5. Implement authenticatorGetAssertion for authentication. Upon receiving
an authenticatorGetAssertion request, the board should generate a signa-
ture with the credential generated in the previous step. The response includes
two fields; authData and signature.

3.3. TOOLS AND RESOURCES 25

3.3 Tools and Resources

This section outlines the tools and resources utilized in developing the authenticator.
From the STM32 Nucleo-64 development board and the Zephyr Real-Time Operating
System (RTOS) to software libraries like mbedtls and liboqs, each component is
instrumental in realizing the project’s objectives.

3.3.1 STM32 Nucleo-64 Development Board

Acting as the authenticator will be the STM32 Nucleo-64 development board with
the STM32L476RG Microcontroller Unit (MCU) based on the 32-bit Arm Cortex M4
processor. The board and the OFFPAD share similar hardware, most importantly
the Arm Cortex M4 processor. Since the project aims at being of relevance to the
OFFPAD, it made sense to pick hardware with similar specifications.

3.3.2 Zephyr OS

As its Operating System (OS), the OFFPAD uses Zephyr OS [Zep24b]. It is an
open source RTOS designed for use on embedded and resource-constrained systems
and is developed by the Linux Foundation [Lin24]. Choosing the same OS for the
Nucleo-L476RG as that running on the OFFPAD adds another layer of similarity
between the two devices, so that the results translate better into a potential OFFPAD
implementation. The OS’s high configurability allows seamless integration with third-
party libraries relevant to the project. Notably, Zephyr OS comes equipped with many
built-in features, including cryptography modules and specific encoding schemes,
further contributing to its suitability for the project. In addition to the reasons
mentioned, it also comes with comprehensive documentation available on the Zephyr
Project website.

3.3.3 C Programming Language

The C programming language is the de facto standard for embedded development.
Many embedded systems rely on it due to its low-level nature, which offers a high
degree of direct hardware control [Bar99]. Given that Zephyr OS supports both C
and its closely related counterpart, C++, opting for C as the primary language for
this project is a natural choice. Moreover, when seeking assistance or information
online for embedded system-related queries, C is the predominant context, making it
a favorable and practical choice.

3.3.4 FIDO2 Testing Server

PONE Biometrics has created their own FIDO2 testing server written in Java
implementing WebAuthn. This will act as the RP. An already developed server

26 3. METHODOLOGY

that can handle the FIDO2 authentication flow is sufficient for this project, as long
as it can be edited to support Dilithium signatures. For this reason, I was given
access to the PONE Biometrics repository with the FIDO2 testing server. There are
many FIDO2 test server implementations out there, but given my direct dialogue
with the people at PONE Biometrics, it made sense to go with theirs for effective
collaboration.

3.3.5 Libraries

To perform CTAP encoding and decoding, as well as cryptographic operations, both
classical and PQC ones, the following libraries were used.

zcbor

CTAP messages are encoded in CBOR, and so a tool was necessary to perform
encoding and decoding. For this task, the open source library zcbor [Nor24] is used.
It comes preinstalled on Zephyr and is the default CBOR-encoding tool in Zephyr,
specifically tailored for use in microcontrollers. It can be used to generate C code for
encoding or decoding of CBOR.

mbedtls

For classic cryptographic primitives, the open source library mbedtls [Mbe24] is used.
Its small code footprint makes it suitable for embedded systems, and it also comes
preinstalled on Zephyr. Some of its functionality used in this project is its SHA-256
and ECDSA implementations.

liboqs

For PQC functionality, the open source library liboqs [Ope24] is used and provides
the Dilithium and Falcon algorithms. The library is part of the Open Quantum Safe
(OQS) project, which aims to facilitate prototyping with quantum-secure algorithms
to make migration to PQC easier. OQS is supported by the PQC Alliance as part of
the Linux Foundation. The library’s contributors constitute individuals, academics
and researchers, as well as companies including Amazon Web Services, Microsoft
Research, and IBM Research. It can be used as a Zephyr module, making its
integration into this project simple.

3.4 Performance Measuring

To evaluate the performance of the algorithms implemented, several benchmarks
will be conducted. These benchmarks will measure key aspects of cryptographic
operations, focusing on the following metrics:

3.4. PERFORMANCE MEASURING 27

– Key generation time. The time (in ms) taken to generate a cryptographic
key pair.

– Signing time. The time (in ms) taken to sign a message.

– Public key size. The size (in bytes) of the public key.

– Signature size. The size (in bytes) of the generated signature.

For the timing benchmarks, the standard deviation, a measure of the amount of
variation around the mean of a set of values, will be calculated. This helps illustrate
the significance of Dilithium’s rejection sampling in its performance.

The performance of the following algorithms will be assessed:

– ECDSA. The classical ECDSA algorithm, using the P-256 curve along with
SHA256. It goes under the name ES256 in the IANA COSE Algorithm Registry
[Int24].

– Dilithium-2. The Dilithium algorithm instantiated with NIST security level
2.

– Falcon-512. Another PQC algorithm [FHK+18] being standardized by NIST.
Instantiated with NIST security level 1.

– Hybrid ECDSA with Dilitihum-2. ECDSA used in combination with
Dilithium-2.

– Hybrid ECDSA with Falcon-512. ECDSA used in combination with
Falcon-512.

In this work, Zephyr’s system clock, as part of its kernel services, is used to
measure an operation’s time. This is done by looking at the system clock once
before, and once after, an operation is performed. The total time taken by the
operation is the difference between these two measurements. The function used is
sys_clock_tick_get() which returns the system clock in terms of ticks. For the
Nucleo-LG476RG board, CONFIG_SYS_CLOCK_TICKS_PER_SEC is set to 10000. To
convert from ticks to milliseconds, one can then do ticks×1000

10000 . The testing code is run
in the same place as the operation would be performed regularly, with the exception
that the operation is put inside a loop such that 50 iterations of the operation can
be performed, which should result in a representative mean value.

1 int num_runs = 50;
2 for (int i = 0; i < num_runs ; i++) {
3 int64_t start_tick , end_tick ;

28 3. METHODOLOGY

4 start_tick = sys_clock_tick_get ();
5
6 /* Operation to benchmark here */
7
8 end_tick = sys_clock_tick_get ();
9 tick_diff = end_tick - start_tick ;

10 printk (" Iteration : %d, ticks : %lld\n", i, tick_diff);
11 }

Listing 3.1: Code used for benchmarking.

Chapter4Proposed Solution

This chapter delves into the implementation of an authenticator capable of quantum-
secure FIDO2 authentication. Since the FIDO2 standard doseparately.support PQC
algorithms, achieving this required building the capabilities of the authenticator from
scratch. As a result, a significant portion of this section is dedicated to detailing
the implementation of CTAP on the Nucleo-L476RG development board. In this
context, authenticator refers to the development board serving as an authenticator
due to the implementation of CTAP.

4.1 Requirements

There are some concrete requirements of the implementation for it to function as
a PoC for quantum-secure FIDO2 authentication. These requirements define the
behavior and features that the system must possess.

ID Requirement
FR1 The authenticator should be able to register a new credential with the

test server (RP), and use it to authenticate.
FR2 The authenticator (and test server) should support hybrid credentials,

i.e., ECDSA combined with Dilithium-2.

4.2 Architecture

Although the majority of the implementation work during this project has been
on making the development board act as an authenticator capable of the above
requirements, several other components are involved in making a complete FIDO2
authentication flow. The components involved for the complete testing system are
the authenticator, the client (browser), the test server (RP), and a database for the
test server to store registered users.

29

30 4. PROPOSED SOLUTION

Figure 4.1: Overview of the components involved in the development environment
to perform a full FIDO2 authentication flow.

The primary focus of the implementation lies in CTAP, encompassing the commu-
nication between the authenticator and the client. Supplementary efforts are directed
towards the RP side, specifically to integrate support for the Dilithium-2 algorithm,
a process conducted closely with PONE Biometrics. Additionally, the RP establishes
connectivity to a MariaDB database for storing registered users. All components
operate in a local development environment running on a Lenovo ThinkPad X1 Yoga
(1st Gen), equipped with a Core i7 processor and 16 GB of RAM.

4.3 Transmission and Reception of Data

This section focuses on how data is received and transmitted between the PC and the
board. It should be noted that CTAP messages are framed for USB transport using
the Human Interface Device (HID) protocol [FID18]. Implementing this protocol
from scratch is beyond the scope of this project, which is why an external Python
script is used to translate serial to HID, and vice versa, effectively creating a virtual
USB port. Implementation efforts therefore went into developing functional serial
communication, and have it translated to HID.

4.3.1 UART

Implementing the functionality of the board to receive and transmit data marks the
initial stage of converting the board into an authenticator. Communication between
the PC and the board occurs via a serial connection. This is achieved by accessing

4.3. TRANSMISSION AND RECEPTION OF DATA 31

the Universal Asynchronous Receiver-Transmitter (UART) peripheral on the board.
The code below is used to declare and initialize a constant pointer to a device struct
for the UART device. This pointer can then be used to interact with the UART
device for receiving and transmitting serial data. Note the Zephyr-specific functions
such as DT_CHOSEN is a macro provided by the Zephyr’s device tree API. The details
of how Zephyr’s own APIs operate are beyond the scope of this work.

1 define UART_DEVICE_NODE DT_CHOSEN (zephyr_shell_uart)
2 static const struct device * const uart_dev =

DEVICE_DT_GET (UART_DEVICE_NODE);

Listing 4.1: UART initialization.

Zephyr provides three different UART APIs: polling, interrupt-driven, and
asynchronous. Of these three, the first two are used. In this implementation, the
interrupt-driven API is used for receiving, and the polling API is used for transmitting.
Interrupt-driven reception allows the board to handle incoming data as soon as it is
sent, rather than having to wait for another process to complete.

4.3.2 Data Reception

Zephyr’s interrupt-driven UART API is used for reception. It provides the function
uart_irq_callback_user_data_set() which takes a UART device and a callback
function as parameters and is initialized in the main method. When an interrupt
request is triggered, the specified function will be called. The callback function
is responsible for reading the incoming data, and its most important elements are
defined below.

1 void uart_rx_isr (const struct device *dev , void * user_data) {
2 uint8_t c;
3 ...
4 while (uart_fifo_read (uart_dev , &c, 1) == 1) {
5 if ((c == ’\n’ || c == ’\r’) && rx_buf_pos > 0) {
6 rx_buf [rx_buf_pos] = ’\0 ’;
7 k_msgq_put (& uart_msgq , &rx_buf , K_NO_WAIT);
8 ...
9 } else if {...}

10 }
11 }

Listing 4.2: Callback function for reading incoming data.

The Zephyr function uart_fifo_read() reads a single character c at a time and
puts it in the global variable rx_buf until either a line feed (\n) or carriage return
(\r) character is read. When all data is read, it is put in a global message queue
uart_msgq. A loop in the main method continuously tries to read messages stored in
the message queue for further processing. This is done with k_msgq_get() reading

32 4. PROPOSED SOLUTION

messages from the queue in a first-in-first-out manner. The read message is passed
to process_ctap_request() for further processing.

1 while (k_msgq_get (& uart_msgq , rx_buf , K_FOREVER) == 0) {
2 size_t rx_buf_msg_len = find_data_length (rx_buf , sizeof (rx_buf));
3 process_ctap_request (rx_buf , rx_buf_msg_len , & ctr_drbg);
4
5 // Clear receive buffer for next message
6 memset (rx_buf , 0, sizeof (rx_buf));
7 }

Listing 4.3: Processing of message queue.

4.3.3 Data Transmission

For data transmission, Zephyr’s polling UART API is used, and the related function
used is uart_poll_out(), taking a pointer to a UART device as defined in Listing
4.1, as well as a pointer to the char to be sent. For example, transmitting the byte
sequence 0x01, 0x02, 0x03 would be performed as in the listing below.

1 uint8_t three_bytes [] = {0x01 , 0x02 , 0x03 };
2
3 for (int i = 0; i < sizeof (three_bytes); i++) {
4 uart_poll_out (uart_dev , three_bytes [i]);
5 }

Listing 4.4: Example of a simple transmission.

In CTAP responses, messages are prepended with a byte 0x00 to indicate success.
In addition, the Python script handling HID communications, must know when to
stop reading the serial message being sent, which is why each serial transmission end
with the transmission of the unique string “CLD_EOL\n”. A complete transmission of
a CTAP response would therefore be performed as below. Although not shown here,
in the actual codebase, the original transmission code is wrapped inside a function
called send_ctap_reply, which takes a byte array and its length and performs the
operations just mentioned.

1 char end_sequence [] = " CLD_EOL \n";
2 ...
3 uint8_t ctap_response ;
4 size_t ctap_response_len ;
5
6 // Indicate success
7 uart_poll_out (uart_dev , 0x00)
8
9 // Payload

10 for (int i = 0; i < ctap_response_len ; i++) {
11 uart_poll_out (uart_dev , ctap_response [i]);
12 }

4.4. CONCISE BINARY OBJECT REPRESENTATION (CBOR) 33

13
14 // Ending sequence to signal the end of transmission
15 for (int i = 0; i < strlen (end_msg); i++) {
16 uart_poll_out (uart_dev , end_msg [i]);
17 }

Listing 4.5: Example of a full transmission sequence for a CTAP message.

4.4 Concise Binary Object Representation (CBOR)

All messages exchanged in the CTAP protocol are encoded in CBOR [Bor20]. It is
a binary data serialization format, and much like JSON, it allows the transmission
of data objects consisting of key-value pairs, but in a much smaller format. This
improves processing and transmission performance, at the cost of human readability.
Often, CBOR allows some information to be encoded in several variants that take up
different lengths in bytes. The encoder is generally free to choose the length that is
most practical for it, but for most, it is natural to choose the encoding that results in
the shortest form. This type of encoding is known as “Preferred Encoding”. There
is also “Deterministic Encoding” which goes beyond Preffered Encoding, and its
purpose is to always produce the same encoding for data items that are equivalent at
the data model level. This is done through defining encoding rules that an encoder
must then follow. CTAP uses this format, also referred to as “Canonical Encoding”.
The CBOR encoding / decoding library in this work is zcbor which can be made to
use Canonical Encoding by enabling the configuration CONFIG_ZCBOR_CANONICAL=y.

4.4.1 CBOR Encoding and Decoding

Encoding and decoding the CTAP commands correctly is critical. The purpose of
zcbor is to generate C code capable of encoding and decoding CBOR data. The code
generation is based on a schema written in Concise Data Definition Language (CDDL),
which is a language used for expressing CBOR data structures. The CDDL-schemas
are, in turn, based on the structure of the CTAP command to be received or the
CTAP reply to be transmitted, e.g., an authenticatorMakeCredential command or
authenticatorMakeCredential reply. To demonstrate how encoding and decoding
is done in practice, the CTAP command authenticatorMakeCredential is used to
showcase how its decoding is done, as well as the encoding of its response.

The first step is identifying the structure of the object being sent. These are well
documented in the CTAP documentation. A typical CBOR structure description is
listed below, this one for the authenticatorMakeCredential command. Here, Key
are byte identifiers for the parameters, and Value Type is what data type the parameter
is. Not all parameters are required, and for our intents and purposes, we will for

34 4. PROPOSED SOLUTION

authenticatorMakeCredential only use the required ones, i.e., clientDataHash, rp,
user, and pubKeyCredParams.

Command Parameter
Name Key Data Type

authenticatorMakeCredential clientDataHash 0x01 byte string
rp 0x02 map

user 0x03 map
pubKeyCred-

Params 0x04 array of maps

excludeList 0x05 array of maps
extensions 0x06 map

options 0x07 map
pinAuth 0x08 byte string

pinProtocol 0x09 integer

Table 4.1: Structure of an authenticatorMakeCredential-command in CTAP.
Not all parameters are required.

The next step is to create the CDDL-file that zcbor will use to generate the encod-
ing / decoding C code. More granular documentation of the data or fields that each
key-value pair should contain is available in the CTAP documentation. From reading
it, one can generate the CDDL-file below. In it, the name make_credential_request is
arbitrary. It is also important to note that zcbor encodes / decodes data in the order
of the keys in the CDDL scheme. In accordance with canonical CBOR encoding, the
keys in the CDDL must therefore be in bytewise lexicographic order. We use labels
for the keys (here 1, 2, 3, 4) such that we can refer to each key with the name of the
field it represents. This makes CDDL files easier to read and makes zcbor generate
more sensible variable names.

1 client_data_hash = 1
2 rp = 2
3 user = 3
4 pub_key_cred_params = 4
5
6 make_credential_request = {
7 client_data_hash : bstr ,
8 rp: {
9 "id": tstr ,

10 "name": ? tstr ,
11 },
12 user: {

4.4. CONCISE BINARY OBJECT REPRESENTATION (CBOR) 35

13 "id": bstr ,
14 "name": ? tstr ,
15 " displayName ": ? tstr ,
16 },
17 pub_key_cred_params : [+{
18 "alg": int ,
19 "type": tstr ,
20 }],
21 }

Listing 4.6: CDDL file for generating C code for decoding an authenticator-
MakeCredential command. The symbols ’?’ and ’+’ are CDDL syntax and means
’optional’ and ’one or more’, respectively.

Once a fitting CDDL scheme has been created, it can be used in conjunction
with zcbor ’s code generation command line tool. As we are currently dealing with an
incoming request, we will use it with –-decode to denote the generation of decoding
code.

1 $ zcbor code --decode -c make_credential_request .cddl -t
make_credential_request --oc make_credential_request_decode .c --oh
make_credential_request_decode .h --oht
make_credential_request_types .h

Listing 4.7: zcbor command for generating source code and header files related
to CBOR decoding of an authenticatorMakeCredential command. The -t
flag is used to choose which type to expose in the CDDL scheme, in this case
make_credential_request. Flags –oc and –oh refer to the path to the generated C
and header file, respectively. Lastly, –oht is the path to the generated types header.

When the command above is run, zcbor will read the CDDL file and create C
struct types in a new file make_credential_request_types.h that match the types
described in the scheme. It then generates code to decode CBOR data into these
structs, and/or code for encoding CBOR from the data in the structs, if being called
with –-encode.

1 struct rp_name {
2 struct zcbor_string rp_name ;
3 };
4
5 struct user_name {
6 struct zcbor_string user_name ;
7 };
8
9 struct user_displayName {

10 struct zcbor_string user_displayName ;
11 };
12
13 struct pub_key_cred_params_map {

36 4. PROPOSED SOLUTION

14 int32_t map_alg ;
15 struct zcbor_string map_type ;
16 };
17
18 struct make_credential_request {
19 struct zcbor_string make_credential_request_client_data_hash ;
20 struct zcbor_string rp_id ;
21 struct rp_name rp_name ;
22 bool rp_name_present ;
23 struct zcbor_string user_id ;
24 struct user_name user_name ;
25 bool user_name_present ;
26 struct user_displayName user_displayName ;
27 bool user_displayName_present ;
28 struct pub_key_cred_params_map pub_key_cred_params_map [3];
29 size_t pub_key_cred_params_map_count ;
30 };

Listing 4.8: Generated structs in make_credential_request_types.h as a result
of running the previous command (Listing 4.7) with the CDDL scheme defined in
Listing 4.6.

The other header file that zcbor generated from the above is
make_credential_request_decode.h. This file includes a function declaration for
decoding a make_credential_request.

1 int cbor_decode_make_credential_request (
2 const uint8_t *payload , size_t payload_len ,
3 struct make_credential_request *result ,
4 size_t * payload_len_out);

Listing 4.9: Function declaration in make_credential_request_decode.h as generated
by zcbor for decoding a make_credential_request.

This implies that an incoming CBOR encoded CTAP command can be passed
as an argument to the decoding function, after which the zcbor-generated C code
will manage the decoding process and parse the decoded data into the declared
make_credential_request struct.

1 struct make_credential_request make_cred_request_decoded ;
2 size_t make_cred_request_decoded_len ;
3
4 printk (" Decoding make credential request ...");
5 if (cbor_decode_make_credential_request (ctap_request_param_data ,
6 ctap_request_param_data_len ,
7 & make_cred_request_decoded ,
8 & make_cred_request_decoded_len) != 0) {
9 printk (" Error decoding make credential request .\n");

10 return ;
11 }

4.4. CONCISE BINARY OBJECT REPRESENTATION (CBOR) 37

12 printk (" ok\n");

Listing 4.10: Call to a zcbor-generated function for decoding a CBOR message.

Upon successful decoding, access to the decoded data in make_cred_request_decoded
is available, akin to accessing elements in any other struct. That is the general process
of how the CBOR decoding is done. The varying factor is the structure of the object
coming in, calling for a different CDDL structure. Now, a brief overview of the
encoding process will be provided, which closely mirrors the process described. To
illustrate, an attestation object will be encoded, which is what the client receives
following an authenticatorMakeCredential CTAP command.

Reply Member
Name Key Data Type

Attestation object fmt 0x01 string
authData 0x02 byte string
attStmt 0x03 byte string

Table 4.2: Brief overview of the structure of an attestation object which gets
returned upon an authenticatorMakeCredential command. For further details on
its structure, see Figure 4.3.

Upon further studying the CTAP documentation, one would create a CDDL
scheme similar to the one below.

1 fmt = 1
2 auth_data = 2
3 att_stmt = 3
4
5 attestation_object = {
6 fmt: tstr ,
7 auth_data : bstr ,
8 att_stmt : {
9 "alg": int ,

10 "sig": bstr ,
11 },
12 }

Listing 4.11: CDDL scheme used by zcbor to generate code for CBOR encoding an
attestation object. The first three lines assigns a byte-key to each field.

Next, using zcbor to generate C code for encoding:

38 4. PROPOSED SOLUTION

1 $ zcbor code --encode -c attestation_object .cddl -t attestation_object
--oc attestation_object_encode .c --oh attestation_object_encode .h
--oht attestation_object_types .h

Listing 4.12: zcbor command for generating source code and header files related to
CBOR encoding an attestation object.

This results in an attestation_object struct in attestation_object_types.h:

1 struct attestation_object {
2 struct zcbor_string attestation_object_fmt ;
3 struct zcbor_string attestation_object_auth_data ;
4 int32_t att_stmt_alg ;
5 struct zcbor_string att_stmt_sig ;
6 };

Listing 4.13: Struct for an attestation object in attestation_object_types.h as
generated by zcbor.

Also, in attestation_object_encode.h, a function declaration for encoding:

1 int cbor_encode_attestation_object (
2 uint8_t *payload , size_t payload_len ,
3 const struct attestation_object *input ,
4 size_t * payload_len_out);

Listing 4.14: Function signature in attestation_object_encode.h for encoding
an attestation object as generated by zcbor. Before the function is called, the struct
attestation_object should have its fields initialized.

After a successful call to cbor_encode_attestation_object(), the pointer ar-
gument passed as the payload parameter will then hold the CBOR-encoded data.

4.5 CTAP Commands

This section will focus on the implementation of three CTAP commands, namely
authenticatorGetInfo, authenticatorMakeCredential, and authenticatorGet-
Assertion. This includes how these commands are processed by the authenticator
to return an appropriate response. These three commands are the minimum required
to register a credential with a RP and perform authentication for that registered
credential. With the exception of authenticatorGetInfo because of its static nature,
the other commands were first implemented for ECDSA, then Dilithium-2, and finally
the hybrid version. This section will primarily focus on the hybrid implementation,
as that is the novelty of this work.

4.5. CTAP COMMANDS 39

4.5.1 High-level Overview

The function responsible for handling CTAP commands and replies is process_ctap_command.
It takes the data that was read in Listing 4.2 and initially reads the first byte of this
data to identify what CTAP operation is being requested.

CTAP Command Byte Identifier
authenticatorGetInfo 0x04
authenticatorMakeCredential 0x01
authenticatorGetAssertion 0x02

Table 4.3: The first byte of a CTAP message indicates what operation is being
requested.

After the requested operation has been identified in the form of a byte, this
value is evaluated in a switch statement and the relevant code block is triggered
for further execution with the remaining data of the message. The cases for
authenticatorMakeCredential and authenticatorGetAssertion are further di-
vided into three cases based on what algorithm was negotiated between the au-
thenticator and the RP; ES256, Dilithium-2, or hybrid. Here, ES256 is the name
for ECDSA with SHA-256 as defined in [SAT24]. These two names will be used
interchangeably. Additionally, in the code, DILITHIUM refers to Dilithium-2.

1 # define MAKE_CREDENTIAL 0x01
2 # define GET_ASSERTION 0x02
3 # define GET_INFO 0x04
4
5 # define ES256 -7
6 # define DILITHIUM -51
7 # define ES256_DILITHIUM -52
8
9 void process_ctap_command (const uint8_t * ctap_request , ...) {

10 switch (ctap_request [0]) {
11 case MAKE_CREDENTIAL :
12 ...
13 negotiate_algorithm ();
14
15 switch (negotiated_alg) {
16 case ES256 :
17 // Do makeCredential for ES256
18 case DILITHIUM :
19 // Do makeCredential for Dilithium -2
20 case ES256_DILITHIUM :
21 // Do makeCredential for hybrid
22 }
23 case GET_ASSERTION :

40 4. PROPOSED SOLUTION

24 ...
25 switch (negotiated_alg) {
26 case ES256 :
27 // Do getAssertion for ES256
28 case DILITHIUM :
29 // Do getAssertion for Dilithium -2
30 case ES256_DILITHIUM :
31 // Do getAssertion for hybrid
32 }
33
34 case GET_INFO :
35 // Send device info
36 }
37 }

Listing 4.15: High-level overview of process_ctap_command(), the function
responsible for performing the appropriate operations based on the received CTAP
command.

We now present how the three different commands were implemented in further
detail.

4.5.2 authenticatorGetInfo

The authenticatorGetInfo (byte identifier 0x04) command is the first message sent
from the client to the authenticator when communication is started. Its purpose is
letting the client know the capabilities of the authenticator such that the client can
adjust its behavior to fit the authenticator. The command takes no parameters, and
since the authenticator’s capabilities do not change, a static response is appropriate.
Since this work only presents a PoC, we are only interested in the required fields of
the authenticatorGetInfo reply; versions and aaguid, representing protocol version
and an identifier for the authenticator, respectively. The versions text field is set
to "FIDO_2_0" to indicate we are working with CTAP2/FIDO2, and the aaguid
bytearray field is for our intents and purposes arbitrary except for the length which
should be 16 bytes, and is therefore set to 16 byte values each representing the value
9, i.e., {0x09, ..., 0x09}.

Since the reply of a authenticatorGetInfo command will always be the same,
a CBOR encoding of the response is generated at the start of the program and then
stored such that it can be quickly returned whenever the client asks for it. The
CBOR encoding of the reply is based on the CDDL file below.

1 versions = 1
2 aaguid = 3
3
4 get_info_reply = {
5 versions : [+ tstr],

4.5. CTAP COMMANDS 41

6 aaguid : bstr ,
7 }

Listing 4.16: CDDL scheme used by zcbor to generate C code for CBOR encoding
an authenticatorGetInfo reply. The first two lines assigns a byte-key to each field.

Once the authenticator receives a CTAP command starting with 0x04, the
authenticator identifies it as an authenticatorGetInfo command and goes into the
appropriate case inside process_ctap_request, in which the reply is sent.

1 case GET_INFO :
2 send_ctap_reply (cbor_encoded_device_info ,

cbor_encoded_device_info_len);

Listing 4.17: Transmission of an authenticatorGetInfo response containing
CBOR encoded information of the device.

4.5.3 authenticatorMakeCredential

One of the most fundamental commands of CTAP is authenticatorMakeCredential.
This section presents how it was implemented in this work.

High-level Overview of Command and Reply

The authenticatorMakeCredential command prompts the authenticator to gener-
ate a new keypair for an agreed upon algorithm. For this work, only the required
fields of the command are in the request coming from the test server (RP).

Command Parameter
Name Key Data Type

authenticatorMakeCredential clientDataHash 0x01 byte string
rp 0x02 map

user 0x03 map
pubKeyCred-

Params 0x04 array of maps

Table 4.4: Structure of an authenticatorMakeCredential command used in this
work.

An example of a decoded authenticatorMakeCredential command is shown
below. The cryptographic algorithm used to generate a new public keypair during a
FIDO2/Webauthn registration is determined by the authenticator and the preferences
of the RP. The allowed algorithms are in the pubKeyCredParams field, and are listed

42 4. PROPOSED SOLUTION

in the order in which they are preferred. The COSE Algorithms registry [SAT24]
contains definitions of all possible algorithms that can be used, each identified with
an integer value.

{1: h’56CDD025C70E0C3B1C768D082492ECBACFDC13974FE712A6C6F01FFA146CCC79’,

2: {"id": "localhost",
"name": "ponebiometrics.com"},

3: {"id": h’3082019330820138A0030201023082019330820138A003020102308201933082’,
"name": "digneludvig",
"displayName": "digneludvig"},

4: [{"alg": -7, // ES256 (ECDSA w/ SHA-256)
"type": "public-key"},

{"alg": -257, // RS256 (RSASSA-PKCS1-v1_5 w/ SHA-256)
"type": "public-key"}]}

Figure 4.2: Example of a decoded authenticatorMakeCredential command. Key
1 is the clientDataHash. Key 2 is information on the RP. Key 3 is information on
the user, with id being a RP-specific account identifier. Key 4 is pubKeyCredParams,
consisting of algorithms supported by the RP.

The authenticator replies to authenticatorMakeCredential with an attestation
object containing the public key along with other attestation data. An attestation
object has three fields; fmt, attStmt, and authData. It is broken down in further
detail in the figure below.

4.5. CTAP COMMANDS 43

Figure 4.3: Structure of an attestation object, and is what is returned upon an
authenticatorMakeCredential command [FID18].

CBOR Object Signing and Encryption (COSE) Keys

To proceed with the presentation of the implementation, we must first talk about
COSE keys, as these play a central role in FIDO2/WebAuthn. COSE is a specification
for how various security services should be represented in CBOR, such as how to
represent cryptographic keys. A COSE key structure is built on a CBOR map object,
and must include the field key type (kty), but may also include other fields. Kty is
used to identify the family of keys the structure belong to. All our COSE keys will
also include the algorithm (alg) field, which is used to restrict the algorithm being
used with the key. These alg values are the same as those in pubKeyCredParams in
that they come from the COSE Algorithms list [SAT24].

To understand the COSE key structure for the proposed hybrid mechanism,
one must first understand the COSE key structure used for ECDSA and Dilithium
separately. An example of, and the one used in this work, a COSE key structure for
an elliptic curve public key in EC2 format [Sch17a], on the P256 curve, to be used
with the ES256 signature algorithm (ECDSA w/ SHA-256) [Sch17b] is shown below.

44 4. PROPOSED SOLUTION

{
1: 2, ; kty: EC2 key type
3: -7, ; alg: ES256 signature algorithm

-1: 1, ; crv: P-256 curve
-2: x, ; x-coordinate as byte string, 32 bytes

; e.g., in hex: 65eda5a12577c2ba...e108de439c08551d
-3: y ; y-coordinate as byte string, 32 bytes

; e.g., in hex: 1e52ed75701163f7...40ddf9f341b3dc9b
}

Figure 4.4: COSE key structure for the ES256 algorithm (ECDSA w/ SHA256).

As the Dilithium algorithm is still in its early stages in terms of reaching
widespread implementation, there is currently no official COSE serialization for
a Dilithium public key, let alone a hybrid one. However, there exists an Internet-
Draft [PSM+24] describing COSE serialization for ML-DSA, an algorithm derived
from Dilithium. The Dilithium COSE key structure used in this work is based on
the structure described in that document. The chosen structure is shown below.

{
1: 7, ; kty
3: -51, ; alg

-14: pk ; public key as byte string, 1312 bytes (for Dilithium-2)
; e.g., in hex: 7803c0f9f1a4e7d3...3bba7abdf2da5bea

}

Figure 4.5: Chosen COSE key structure for the Dilithium-2 algorithm.

For the hybrid COSE key structure, which contains both the ECDSA and
Dilithium-2 public keys, the union of the two individual COSE key structures
is used. Since they both share kty and alg fields with unique values for these, we set
a common kty value to 8, and a common alg value to one less than that of the alg
value for ML-DSA in the draft [PSM+24], namely -52. This results in the structure
below.

{
1: 8, ; kty
3: -52, ; alg

-1: 1, ; crv: P-256 curve
-2: x, ; x-coordinate as byte string, 32 bytes
-3: y, ; y-coordinate as byte string, 32 bytes
-14: pk ; public key as byte string, 1312 bytes (for Dilithium2)

}

Figure 4.6: Chosen hybrid COSE key structure for ECDSA and Dilithium-2 keys.

4.5. CTAP COMMANDS 45

Generating the Keys

We now present how the keys are generated once an authenticatorMakeCredential
command is received. Firstly, let us set some context for the code relating to
keys. There exists an array containing algorithm identifiers for the algorithms the
authenticator supports, and is used for negotiating an algorithm with an RP, where
the algorithms the RP supports are in the pubKeyCredParams in 4.5.3.

1 const uint32_t SUPPORTED_ALGORITHMS [] = { ES256_DILITHIUM , DILITHIUM ,
ES256 };

Listing 4.18: Global array containing algorithms supported by the authenticator.
Preferability goes from most preferred (lowest index) to least preferred (highest
index). The macros used here are the same as defined in Listing 4.15.

Since this is only a PoC, we chose to have only one credential active on the
authenticator at a time, so that the retrieval of the correct credential is simple.
Credential data is stored in a struct Credential that is instantiated only once as a
global variable.

1 typedef struct {
2 char rp_id [MAX_RP_ID_LENGTH];
3 uint8_t credential_id [CREDENTIAL_ID_LENGTH];
4 mbedtls_mpi ecdsa_private_key ;
5 uint8_t dilithium_private_key [OQS_SIG_dilithium_2_length_secret_key];
6 uint32_t sign_count ;
7 } Credential ;

Listing 4.19: Struct used for storing a generated credential. mbedtls_mpi is a
library specific (mbedtls) data type with mpi meaning multi precision integer.

When the authenticatorMakeCredential command is received, byte identifier
0x01 triggers the MAKE_CREDENTIAL case as seen in Listing 4.15. The initial step
involves decoding the request, followed by algorithm negotiation. The latter is
done using the negotiate_algorithm(), which will take the most preferred algo-
rithm of the authenticator and see if the RP supports it, otherwise move on to
the second most preferred, and so on. The algorithm agreed upon is stored in the
global variable negotiated_alg. If the two parties cannot agree on an algorithm, a
CTAP2_ERR_UNSUPPORTED_ALGORITHM error is returned from the authenticator.

With ES256_DILITHIUM, as the negotiated algorithm, a hybrid credential will be
generated. In practice, this means the generation of an ECDSA keypair, as well as
a Dilithium-2 keypair. It should be noted that the Nucleo-LG476RG development
board does not have an entropy device on the system, and that fake entropy is
therefore used. This is not cryptographically secure, but is appropriate for testing
and PoC purposes.

46 4. PROPOSED SOLUTION

1 case ES256_DILITHIUM :
2 struct credential_public_key_hybrid credential_public_key_hybrid ;
3 ...
4 // Dilithium -2 key generation
5 uint8_t

public_key_dilithium [OQS_SIG_dilithium_2_length_public_key];
6
7 if (OQS_SIG_dilithium_2_keypair (public_key_dilithium ,

credential . dilithium_private_key) != OQS_SUCCESS) {
8 printk (" Error generating Dilithium keypair .\n");
9 return ;

10 }
11
12 // ES256 key generation (ECDSA w/ SHA -256)
13 uint8_t pk_x_coord [ECDSA_PUBLIC_KEY_COORD_SIZE]
14 uint8_t pk_y_coord [ECDSA_PUBLIC_KEY_COORD_SIZE];
15
16 if (generate_ecdsa_keypair (ctr_drbg , pk_x_coord , pk_y_coord ,

& credential . ecdsa_private_key) != 0) {
17 printk (" Error generating ECDSA keypair .\n");
18 return ;
19 }
20 ...

Listing 4.20: Generation of ECDSA and Dilithium-2 keypairs in the hybrid case.
Dilithium-2 uses the API provided by the liboqs library, and ECDSA the one provided
by mbedtls. Here, generate_ecdsa_keypair() is not a function signature exposed
by mbedtls, but rather a wrapper function created in this work to factor out some code
from the process_ctap_command() function. The private key for each respective
algorithm is stored in its appropriate field in the Credential struct.

In the above listing, a struct credential_public_key_hybrid is declared. This
struct is generated by zcbor using a CDDL scheme based on the hybrid COSE key
structure previously defined. This structure has its fields populated via a helper
function populate_credential_public_key_hybrid(), which takes the public keys
previously generated as arguments and fills the fields kty and alg with their hardcoded
values for the hybrid credential. The credential_public_key_hybrid object is then
CBOR encoded and part of the attestation object which gets returned to the client.

4.5.4 authenticatorGetAssertion

The second fundamental CTAP command is authenticatorGetAssertion. This
section presents its implementation in this work.

High-level Overview of Command and Reply

The authenticatorGetAssertion command is sent to the authenticator when the
user requests to authenticate against the RP. In this work, the request will contain

4.5. CTAP COMMANDS 47

three fields, two of which are required, rpId and clientDataHash, and one that is not,
allowList.

Command Parameter
Name Key Data Type

authenticatorGetAssertion rpId 0x01 string
clientDataHash 0x02 byte string

allowList 0x03 array of maps

Table 4.5: Structure of an authenticatorGetAssertion command used in this
work.

Below is an example of a decoded authenticatorGetAssertion command.

{1: "localhost",
2: h’DF70A405193F9E41F8C5C7FB0E4ED03B4CFDA6D61B4B9A82C3F52B68C0FF6E4F’,
3: [{"id": h’2DCF462904B478D868A7FF3F2BF1FCD9’,

"type": "public-key"}]}

Figure 4.7: Example of a decoded authenticatorGetAssertion command used
in this work.

Once the command is received, the data in the request will be processed, and a
response is returned containing the required fields, i.e., authData and signature.

Reply Member
Name Key Data Type

Assertion object authData 0x02 byte string
signature 0x03 byte string

Table 4.6: Structure of the object that gets returned upon on an authenticatorGet-
Assertion command. Contains the signature to be verified for authentication.

The Hybrid Signature Construction

We will first present the chosen structure of the hybrid signature, before showing
how it is generated in practice on the authenticator. The hybrid construction chosen
is a concatenation of a classical ECDSA signature and a quantum-secure Dilithium-2
signature, where each signature is generated separately with the same message as
input. To verify this hybrid construction, the verifier will first split the signature
into its respective components (ECDSA and Dilithium-2 signatures) and verify each

48 4. PROPOSED SOLUTION

signature separately. The hybrid signature will verify if and only if both individual
signatures are verified.

The verifier must know how to split the hybrid signature into its respective
components, which is why each separate signature in the hybrid one is prepended
with a two byte value indicating the length of its signature. This is necessary because
the signature lengths may vary. ECDSA signatures (ASN.1 DER format) generated
in this work vary between being 70, 71, or 72 bytes long. In addition, the Dilithium
signature lengths vary based on the security level used.

Figure 4.8: Example of a hybrid signature used in this work, showing the hybrid
construction used. Each size field is a two-byte integer value indicating how the
hybrid signature should be split.

Generating the Hybrid Signature

The message that gets signed is the concatenation of the clientDataHash field
in authenticatorGetAssertion and the authData object that gets built upon
authentication. This authData object is not the same as the one built during
authenticatorMakeCredential, although it is similar. This one does not contain a
credential public key, and the counter is increased by one (going from 0 to 1 if it is
the first time signing with the credential). Each algorithm generates a signature on
the message individually, after which the two generated signatures are put together
to form the hybrid signature. In this work, the ECDSA signature takes a hash of the
message as input because the mbedlts implementation of the ECDSA algorithm does
not perform hashing as part of the algorithm as is typical behavior.

1 /* Build new authData and concatenate clientDataHash with authData as
message */

2
3 // ECDSA
4 unsigned char signature_ecdsa [MBEDTLS_ECDSA_MAX_LEN];
5 size_t signature_ecdsa_len ;
6 generate_ecdsa_signature (credential . ecdsa_private_key , ...);
7
8 // Dilithium -2
9 unsigned char signature_dil [OQS_SIG_dilithium_2_length_signature];

4.5. CTAP COMMANDS 49

10 size_t signature_dil_len ;
11 OQS_SIG_dilithium_2_sign (credential . dilithium_private_key , ...);
12
13 // Hybrid
14 unsigned char signature_hybrid [2 + MBEDTLS_ECDSA_MAX_LEN + 2 +

OQS_SIG_dilithium_2_length_signature];
15
16 /* Convert ECDSA and Dilithium -2 signature lengths to 2 byte values */
17
18 /* memcpy () used for building the hybrid construction */
19
20 // Transmission
21 /* Build , encode , and transmit assertion object */

Listing 4.21: Generation of a hybrid signature, i.e., an ECDSA signature
concatenated with a Dilithium-2 signature, with each signature prepended with
a two-byte integer value indicating the length of the individual signature.

With this hybrid signature construction, it was possible to authenticate against
the local test server with what is believed to be quantum-security. This demonstrates
that using Dilithium in FIDO2 is plausible, but there are many nuances to explore,
which will be addressed in the next chapter.

Chapter5Performance and Discussion

This chapter presents benchmarks conducted on the implementation developed in
this work. It begins with showcasing the results for the Dilithium algorithm and its
hybrid version with ECDSA. Additionally, benchmarks for another PQC algorithm,
Falcon-512, are presented to provide further context for discussion.

The discussion section explores the nuances of hybridization, including various
hybrid constructions. It also delves into performance trade-offs between different
algorithms. Furthermore, the relevance of SEs and SCAs to this work is discussed.
Finally, the chapter concludes by presenting current challenges associated with
quantum-securing FIDO2.

5.1 Performance

The performance results for the implemented algorithms are presented below. The
standard deviation σ is a measure of the variance in the data in relation to the mean.

Algorithm ECDSA Dilithium-2 Hybrid
Time

Key Generation 940 ms (σ = 1.2) 49 ms (σ = 0.6) 996 ms (σ = 1.3)
Signing 920 ms (σ = 1.4) 132 ms (σ = 73.8) 1048 ms (σ = 68.7)

Size (Bytes)
Signature 71 (σ = 0.65) 2420 2495 (σ = 0.65)

Public Key 64 1312 1376

Table 5.1: Key generation and signing times, along with signature sizes, for classical
ECDSA, Dilithium-2, and the hybrid version. ECDSA’s public key size is set to 64
as it consists of an X and Y coordinate, each being 32 bytes. The hybrid public key
is then calculated as the sum of 64 and the public key size of Dilithium-2.

51

52 5. PERFORMANCE AND DISCUSSION

The most notable observation is that Dilithium-2 is significantly faster than
classical ECDSA, with key generation being nearly 20 times quicker. This is expected,
as Elliptic Curve Cryptography (ECC) is often slower in constrained environments
due to complex operations, whereas lattice cryptography is often fast in constrained
environments due to simpler arithmetic operations. The hybrid signature shows
key generation and signing times that are effectively the sum of the time taken by
ECDSA and Dilithium-2, respectively. This is a natural consequence of how the
hybrid signature was built, where the signatures are generated one after the other
in sequence and then combined into a single structure. Another observation to
make is that the standard deviation σ of the signing time for Dilithium-2 is high.
This variation arises due to Dilithium’s rejection sampling technique, as explained in
Subsection 2.3.3, where the number of iterations executed by the algorithm fluctuates,
naturally resulting in fluctuations in time.

We performed the same benchmarks for another lattice-based algorithm being
standardized by NIST for PQC, namely Falcon-512 [FHK+18]. Although it is also
lattice-based, it is more complex than Dilithium, and has a significantly longer key
generation time. However, its signature and public key sizes are smaller, which can
be beneficial in certain use cases.

Algorithm Falcon-512 Hybrid (ECDSA w/ Falcon-512)
Time

Key Generation 4270 ms (σ = 2046) 5337 ms (σ = 1898)
Signing 1060 ms (σ = 2.5) 2071 ms (σ = 2.3)

Size (Bytes)
Signature 655 (σ = 2.4) 730 (σ = 2.5)

Public Key 897 961

Table 5.2: Key generation and signing times, along with signature and public key
sizes, for Falcon-512 and its hybrid version with ECDSA. The hybrid public key size
here is calculated in the same way as in Table 5.1.

5.2 Discussion

This section presents a discussion covering various aspects of quantum-securing FIDO2.
These topics include using hybrid vs. pure PQC, the nuance of hybrid constructions,
performance trade-offs between algorithms, considerations regarding SE and SCA,
as well as general challenges for the FIDO2 standard. The discussion ends with a
short reflection on how this work relates to the UN Sustainable Development goals.

5.2. DISCUSSION 53

5.2.1 Hybrid vs. Pure PQC

The decision to use hybrid constructions to move smoothly into a quantum-secure
digital landscape is not obvious. In the United States, the National Security Agency
(NSA) has included Dilithium as part of their new algorithm suite, CNSA 2.0 [Nat22b].
They have explicitly mentioned that they will not require developers to implement
hybrid solutions for security purposes, instead proposing to only use PQC algorithms,
expressing confidence in the robustness of these. The NSA argues that hybrid solutions
add unnecessary complexity to protocols and introduce interoperability concerns, as
all communicating parties must adopt the same algorithms and hybridization methods.
Furthermore, a hybrid approach would eventually lead to a second transition phase
to entirely phase out classical algorithms once the PQC ones are deemed mature
enough [Nat22c]. While these arguments are valid and highlight practical concerns,
it is important to consider previous controversies surrounding the NSA, such as
allegations of deliberately subverting cryptographic standards to include their own
backdoor, as exemplified by the Dual EC case [BLN16].

In contrast, the national security authority (NSM) in Norway recommends the
use of hybridization [Øde24], arguing that new algorithms should be combined with
established classical algorithms in which there is already a high level of trust. This
approach aims to ensure a lower bound of security provided by the classical algorithms
while the newer algorithms undergo further scrutiny. Similarly, Germany’s Federal
Office for Information Security (BSI) shares this recommendation, citing that the
newer algorithms have not been scrutinized to the same extent as classical ones, and
thus should be used in a hybrid construction to ensure robust security [Fed21].

5.2.2 Hybrid Constructions

While it is well understood that PQC hybridization should enable security that is
lower bounded by the classical algorithm, the question arises as to what such a
hybrid construction should look like, and what properties it should have. In this
work, we implemented a simple hybrid construction consisting of two concatenated
signatures, each prepended by a two-byte value indicating the individual signature’s
length. However, there are many other types of constructions and means for achieving
hybridization. In [BH23], the authors mention several desirable properties of hybrid
signatures, the most critical one being proof composability. This is the fundamental
premise behind hybridization, meaning that the algorithms included in the hybrid
construction must be combined in such a way that it is possible to prove reduction
to the security properties of each individual algorithm. Without this property,
users cannot be assured that the hybrid construction builds on the standardization
process and analysis performed to date on the component algorithms – the hybrid
construction becomes, in effect, a completely new algorithm.

54 5. PERFORMANCE AND DISCUSSION

Furthermore, the authors of [BH23] discuss how various hybrid constructions of
digital signatures exhibit different levels of separability. Separability refers to the
extent to which a verifier can detect if one of the composite algorithms of the hybrid
construction has been removed. Among the constructions with the highest degree
of separability, the authors identify the concatenation of signatures (much like the
method used in this work). For constructions with the lowest degree of separability,
verification fails if one of the composite signatures is missing, but also if the verifier
fails to verify both signatures. This exhibits a property the authors of [BH23] call
simultaneous verification, where both composite signatures must be present, and the
verifier cannot "quit" the verification process before both components are verified.
Contrast this with the concatenation construction used in this work, which does not
exhibit this property. In this case, a quantum-capable attacker could potentially
forge the classical algorithm but not the PQC one. The attacker could then possibly
perform a clock glitch attack to skip the second part of a verification statement, e.g.,
verify(classic) && verify(PQC), and have the hybrid signature verified.

Ease of implementation is an important consideration. Simple concatenation is
straightforward, but may expose certain security vulnerabilities. While other hybrid
constructions with more desirable properties might offer enhanced security, they
are likely more difficult to implement. With Norway and Germany recommending
hybridization, it is probable that other developed countries also will, leading to
widespread adoption of hybrid implementations. In such cases, ease of implementation
will likely be a desirable criterion, even if it means accepting slightly lower security
compared to more advanced implementations. Cryptography is already difficult to
implement correctly and securely; adding additional layers of complexity for the sake
of security may backfire, leading to other vulnerabilities due to faulty implementation.
We may see more advanced constructions implemented in systems with higher security
demands, which are likely the systems with the most urgent need to migrate to PQC.

5.2.3 Performance Trade-offs Between Algorithms

There are other PQC algorithms being standardized besides Dilithium, each with
markedly different performance characteristics. For example, as illustrated in Table
5.2, the Falcon-512 algorithm has a significantly longer key generation time. However,
its signature size is just over a quarter of that of Dilithium-2, and its public key size
is approximately 30% smaller. When selecting a PQC algorithm for a specific use
case, it is important to weigh the trade-offs between speed and size. For example, in
the FIDO2 registration process, key generation with a RP is performed only once.
Given the infrequency of this operation, the longer key generation time of Falcon-512
may be acceptable if the smaller signature size is prioritized, even if the signature
generation itself is slightly slower. Additionally, in environments where bandwidth
is a limiting factor, the smaller signature size of Falcon-512 could potentially result

5.2. DISCUSSION 55

in faster transmission, ultimately saving more time despite the longer signature
generation time (consider Falcon-512 vs. Dilithium-2 in this work). These algorithms
can also be instantiated for different security levels, which affect speed and sizes
depending on the chosen level. This is also something that must be taken into
consideration when choosing an algorithm, i.e., does a higher security level justify
the increase in speed and size, and vice versa.

5.2.4 Secure Elements and Side-Channel Attacks

The fundamental security strength of security keys, such as the OFFPAD, lies in
the use of secure microcontrollers, i.e., SE, to safely generate, store, and use secret
cryptographic keys. These are crucial because without them, secret keys could be
revealed through a SCA by an attacker with physical access to the device. SEs
exist for many classical algorithms (e.g., ECDSA), but support for PQC is not yet
available. In a scenario where an attacker successfully extracts a PQC secret key
through SCA, they could forge signatures if pure PQC is used. If hybridization is
used, this threat is mitigated, as the attacker would still need the classical secret
key, which is assumed to be protected by a SE. This reinforces the choice to opt for
hybridization over pure PQC, as discussed in Subsection 5.2.1.

In this work’s authenticator implementation, no SE was used, making the secret
keys susceptible to SCA by an attacker with physical access to the device. A question
arises as to whether it makes sense for a security key manufacturer to implement
a PQC algorithm despite it not being protected by a SE. Over the internet, the
absence of a SE generally does not affect security, and the authenticator would still
benefit from the PQC algorithm, even though it is not protected by a SE. With no
attacker physically present, there is little to no SCA threat, and quantum security
is still achieved if the developer chooses to implement PQC without SE protection.
The small threat comes from possible timing attacks over the internet in which an
attacker measures the time it takes to generate a signature, and from that may be
able to extract the secret key. Work is being done on how to effectively prevent this,
see [EEN+24] and [dPPRS23]. Ultimately, it is up to the user to decide how much
risk they are willing to accept. SEs supporting PQC will likely be available in the
near future, making this decision less critical for now.

5.2.5 Challenges for FIDO2

This work has shown that it is possible to use hybrid signatures to make FIDO2
authentication quantum-secure, but this is just one implementation. As previously
discussed, there is a lot of nuance and many factors to consider when making a system
quantum-secure. Ultimately, the FIDO Alliance decides the path forward for PQC in
FIDO2 authentication. Firstly, they must decide if they should use pure PQC, hybrid,

56 5. PERFORMANCE AND DISCUSSION

or even both. This decision is not obvious, and different regions will likely have
different degrees of preparedness for each scenario. The NSA recommending the use
of pure PQC may result in local manufacturers of security keys in the United States
not supporting hybrid signatures, while other regions (e.g., Norway and Germany)
only supporting hybrids. It would probably make the most sense for the FIDO
Alliance to make a decision and then have manufacturers tailor their new devices to
fit this decision, rather than the FIDO Alliance trying to accustom many different
implementations.

Secondly, assuming the FIDO Alliance opts for hybrid signatures, they must
define the construction and security properties of the hybrid approach, as well
as choose the algorithms to be used. This work demonstrated the feasibility of
using the Dilithium algorithm in a simple concatenation construction, which was
straightforward to implement and very fast. Similarly to how the FIDO2 standard
supports various classical algorithms, it makes sense to offer multiple PQC algorithms,
such as Dilithium and Falcon, possibly in different types of hybrid constructions. This
approach would make FIDO2 flexible and supportive of various implementations of
authenticators, giving users some agency over their exposure to risk (i.e., pure PQC
vs. hybrid, simple hybrid construction vs. advanced hybrid construction, security
level of algorithms). Additionally, it is important to note that, while not necessarily
a challenge, work must be done to develop COSE representations for the public
keys of the chosen PQC solutions. This work proposed a simple COSE structure
for a hybrid ECDSA and Dilithium key, but unforeseen challenges may arise when
mixing different types of classical algorithms with novel PQC ones. Properly defining
these COSE structures is crucial to ensuring interoperability and security within the
FIDO2 framework.

5.2.6 Relevance to the UN Sustainable Development Goals

The imminent threat posed by quantum computers necessitates the upgrading of digi-
tal infrastructure to ensure security. This work makes a contribution to enhancing the
security of the FIDO2 standard, aligning with the 9th UN Sustainable Development
Goal, i.e., “Build resilient infrastructure, promote sustainable industrialization, and
foster innovation” [Uni24]. Specifically, it supports sub-goal 9.2, which emphasizes the
importance of enhancing scientific research and upgrading technological capabilities
across all countries.

Chapter6Conclusion and Future Work

In this concluding chapter, we address the research questions formulated at the
outset of this work and summarize the findings of the study. The exploration of
quantum-secure authentication within FIDO2 has led us to examine various aspects
of hybridization, algorithm selection, user-centric security considerations, and other
challenges with quantum-securing FIDO2. Let us now try to formulate some answers
to our research questions and conclude, as well as propose some further research in
this evolving domain.

6.1 Research Questions

RQ1: With respect to contemporary technology and research, is the
FIDO2 standard ready to migrate to quantum-secure authentication?

The FIDO2 standard’s readiness to migrate to a quantum-secure authentication
mechanism hinges on several factors. This work presents a PoC implementation of
quantum-secure FIDO2 authentication, specifically demonstrating authentication
using a concatenation hybrid construction. While functional, relatively simple to
implement, and seemingly providing quantum security on the surface, this specific
hybridization method (and many others) lacks rigorous security analysis, leaving
potential vulnerabilities unknown. Therefore, it should not automatically be assumed
to be the preferred method for hybridizing FIDO2.

To facilitate the testing and public scrutiny necessary for cryptographic innova-
tions, the FIDO Alliance could adopt multiple quantum-secure methods, both hybrid
and pure, and allow users to opt in. This approach empowers users to manage their
exposure to security risks while enabling real-world testing of quantum-secure FIDO2
solutions.

57

58 6. CONCLUSION AND FUTURE WORK

Although a SE is an important component of an authenticator, the lack of SE
support for PQC algorithms does not mean that FIDO2 cannot begin the migration
towards quantum security. PQC algorithms perform well in constrained environments,
and the main hardware issue with using PQC on authenticators today is the absence
of a SE, which exposes the authenticator to SCA. However, as mentioned previously,
by giving users the ability to opt in or out of PQC FIDO2 authentication, they can
personally decide what level of risk to accept.

With this respect for the end user in mind, and an intention to continuously
monitor the effectiveness of PQC solutions, the FIDO Alliance is indeed ready to
start the migration towards quantum security.

RQ2: What does a feasible quantum-secure solution for FIDO2
authentication entail?

Ultimately, a quantum-secure FIDO2 solution should offer a range of choices encom-
passing different PQC algorithms and hybridization methods. This variety is essential
to accommodate diverse use cases with varying requirements for key and signature
sizes, as well as signing speed. Insufficient flexibility in these options may result
in an authenticator being compelled to adopt an algorithm or hybrid construction
that proves impractical, potentially leading to its exclusion from PQC adoption and
leaving it vulnerable to quantum attacks.

Moreover, all available PQC options must demonstrate the property of proof
composability, i.e., that the algorithms included in a hybrid construction must
be combined in such a way that it is possible to prove reduction to the security
properties of each individual algorithm. It must also not be possible to perform a
kind of “stripping” attack, wherein the verification process skips one of the composite
algorithms. This could lead to only the classical algorithm being verified, but resulting
in the entire hybrid signature passing as valid.

Lastly, regarding hybridization, the hybrid constructions selected by the FIDO
Alliance should ideally be straightforward to implement on authenticators. This
minimizes the risk of vulnerabilities arising from faulty implementation due to
complexity – an occurrence not uncommon in the field of cryptography.

6.2 Conclusion

This work aimed to implement a PoC authenticator capable of performing hybrid
PQC signatures for FIDO2 authentication. The implementation successfully per-
formed this task, utilizing a hybrid construction consisting of the concatenation of a

6.3. FUTURE WORK 59

classical signature, ECDSA, and a PQC signature, Dilithium. This particular type
of hybridization proved relatively simple to implement while also performing well,
and could be an option offered by a quantum-secure FIDO2 solution.

Although this work demonstrated a possibly feasible solution, further work must be
done to ensure that the implemented solutions offer fundamental security properties.
By initially implementing PQC solutions that are deemed secure and giving end-users
the option to opt-in or out of their use, these solutions can be tested in the real
world and offer PQC authentication for those willing to accept the risks of using a
novel cryptographic system.

6.3 Future Work

To advance the findings presented in this study, it is recommended to build upon
this work and explore the following components.

6.3.1 HID Implementation

CTAP messages are framed for USB transport using the HID protocol [FID18]. To fit
this work in the given timeframe of 21 weeks, the authenticator implemented serial
communication rather than HID, as it is easier. A Python script then translates the
serial communication to HID. This Python intermediary may introduce noise and
small delays, potentially making the benchmarks performed in this study not fully
representative of a proper implementation using only HID. While the results are
likely close to what a production-grade authenticator would yield, an implementation
using HID would provide more scientifically accurate results.

6.3.2 Bluetooth

Some remote authenticators, such as the OFFPAD, use Bluetooth. To better
understand how different algorithm choices perform based on the communication
method used, it would be beneficial to implement PQC algorithms in a FIDO2
context on an authenticator using Bluetooth. Such a study could examine the
relationship between key/signature sizes and key/signature generation times, and
how these factors affect the overall authentication time. This relates to the discussion
in Subsection 5.2.3.

6.3.3 Implementing and Attacking Hybrid Constructions

This work only implemented a concatenation hybridization. There are other methods
of achieving hybridization, such as nested signatures whereby a message is first signed
with a classical algorithm, after which this signature is signed with a PQC algorithm.
The implementation and performance of these other hybrid constructions ought to

60 6. CONCLUSION AND FUTURE WORK

be tested. Furthermore, these implementations, in addition to the concatenation
version in this work, should be deliberately attacked to find weaknesses such that
they can be improved, or avoided completely.

References

[Alb24] M. R. Albrecht, Malb/lattice-estimator: An attempt at a new lwe estimator,
Feb. 2024. [Online]. Available: https://github.com/malb/lattice-estimator?ta
b=readme-ov-file (last visited: Apr. 5, 2024).

[App23] Apple. ”Passkeys”. Accessed on: October 28, 2023. (2023), [Online]. Available:
https://developer.apple.com/passkeys/.

[APS15] M. R. Albrecht, R. Player, and S. Scott, ”On the concrete hardness of learning
with errors”, Journal of Mathematical Cryptology, vol. 9, no. 3, pp. 169–203,
2015.

[AWG+21] N. Alnahawi, A. Wiesmaier, et al., ”On the state of post-quantum cryptogra-
phy migration”, 2021.

[Bar99] M. Barr, Programming embedded systems in C and C++. " O’Reilly Media,
Inc.", 1999.

[BBCW21] M. Barbosa, A. Boldyreva, et al., ”Provable security analysis of fido2”, in
Advances in Cryptology – CRYPTO 2021, T. Malkin and C. Peikert, Eds.,
Cham: Springer International Publishing, 2021, pp. 125–156.

[BCZ23] N. Bindel, C. Cremers, and M. Zhao, ”Fido2, ctap 2.1, and webauthn 2:
Provable security and post-quantum instantiation”, in 2023 IEEE Symposium
on Security and Privacy (SP), IEEE, 2023, pp. 1471–1490.

[BDK+21] S. Bai, L. Ducas, et al., CRYSTALS-Dilithium algorithm specifications and
supporting documentation (version 3.1), Feb. 2021. [Online]. Available: https:
//pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208
.pdf#page=29&zoom=100,138,673.

[BH23] N. Bindel and B. Hale, ”A note on hybrid signature schemes”, Cryptology
ePrint Archive, 2023.

[BHMS17] N. Bindel, U. Herath, et al., ”Transitioning to a quantum-resistant public key
infrastructure”, in Post-Quantum Cryptography: 8th International Workshop,
PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings 8,
Springer, 2017, pp. 384–405.

[BLN16] D. J. Bernstein, T. Lange, and R. Niederhagen, ”Dual ec: A standardized
back door”, in The New Codebreakers: Essays Dedicated to David Kahn on
the Occasion of His 85th Birthday, Springer, 2016, pp. 256–281.

61

https://github.com/malb/lattice-estimator?tab=readme-ov-file
https://github.com/malb/lattice-estimator?tab=readme-ov-file
https://developer.apple.com/passkeys/
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf#page=29&zoom=100,138,673
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf#page=29&zoom=100,138,673
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf#page=29&zoom=100,138,673

62 REFERENCES

[Bor20] C. Bormann, Dec. 2020. [Online]. Available: https://www.rfc-editor.org/rfc/r
fc8949.html.

[CMRR23] L. Chen, D. Moody, et al., Digital Signature Standard (DSS). Feb. 2023.
[Online]. Available: http://dx.doi.org/10.6028/NIST.FIPS.186-5.

[Dig23] L. Digné, Beyond bits: Securing the digital frontier with post-quantum cryp-
tography, Project report in TTM4502, Dec. 2023.

[dPPRS23] R. del Pino, T. Prest, et al., ”High-order masking of lattice signatures in
quasilinear time”, in 2023 IEEE Symposium on Security and Privacy (SP),
IEEE, 2023, pp. 1168–1185.

[EEN+24] M. F. Esgin, T. Espitau, et al., ”Plover: Masking-friendly hash-and-sign
lattice signatures”, in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer, 2024, pp. 316–345.

[Fed21] Federal Office for Information Security (BSI), Migration to post-quantum
cryptography, https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Cr
ypto/Migration_to_Post_Quantum_Cryptography.pdf?__blob=publicat
ionFile&v=2, Accessed: 2024-05-19, 2021.

[FHK+18] P.-A. Fouque, J. Hoffstein, et al., ”Falcon: Fast-fourier lattice-based compact
signatures over ntru”, Submission to the NIST’s post-quantum cryptography
standardization process, vol. 36, no. 5, pp. 1–75, 2018.

[FID15] FIDO Alliance. ”Fido signature format v2.0”. Accessed on: February 7. (2015),
[Online]. Available: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fid
o-signature-format-v2.0-ps-20150904.html.

[FID18] FIDO Alliance. ”Fido client to authenticator protocol v2.0”. Accessed on
January 29, 2024. (2018), [Online]. Available: https://fidoalliance.org/specs/f
ido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id-2018022
7.html.

[FID23a] FIDO Alliance, Fido alliance overview, 2023. [Online]. Available: https://fido
alliance.org/overview/.

[FID23b] FIDO Alliance. ”How fido works”. (2023), [Online]. Available: https://fidoalli
ance.org/how-fido-works/.

[FS86] A. Fiat and A. Shamir, ”How to prove yourself: Practical solutions to identifi-
cation and signature problems”, in Conference on the theory and application
of cryptographic techniques, Springer, 1986, pp. 186–194.

[GKP+23] D. Ghinea, F. Kaczmarczyck, et al., ”Hybrid post-quantum signatures in
hardware security keys”, in International Conference on Applied Cryptography
and Network Security, Springer, 2023, pp. 480–499.

[Goo23] Google. ”Passwordless login with passkeys”. Accessed on: October 28, 2023.
(2023), [Online]. Available: https://developers.google.com/identity/passkeys.

[GSN+20] S. Ghorbani Lyastani, M. Schilling, et al., ”Is fido2 the kingslayer of user
authentication? a comparative usability study of fido2 passwordless authen-
tication”, in 2020 IEEE Symposium on Security and Privacy (SP), 2020,
pp. 268–285.

https://www.rfc-editor.org/rfc/rfc8949.html
https://www.rfc-editor.org/rfc/rfc8949.html
http://dx.doi.org/10.6028/NIST.FIPS.186-5
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography.pdf?__blob=publicationFile&v=2
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id-20180227.html
https://fidoalliance.org/overview/
https://fidoalliance.org/overview/
https://fidoalliance.org/how-fido-works/
https://fidoalliance.org/how-fido-works/
https://developers.google.com/identity/passkeys

REFERENCES 63

[GTJA17] B. B. Gupta, A. Tewari, et al., ”Fighting against phishing attacks: State of
the art and future challenges”, Neural Computing and Applications, vol. 28,
pp. 3629–3654, 2017.

[Int24] Internet Assigned Numbers Authority, IANA COSE algorithms, Accessed:
2024-04-25, 2024. [Online]. Available: https://www.iana.org/assignments/cos
e/cose.xhtml#algorithms.

[JMM+22] D. Joseph, R. Misoczki, et al., ”Transitioning organizations to post-quantum
cryptography”, Nature, vol. 605, no. 7909, pp. 237–243, 2022.

[JMV01] D. Johnson, A. Menezes, and S. Vanstone, ”The elliptic curve digital signature
algorithm (ecdsa)”, International journal of information security, vol. 1,
pp. 36–63, 2001.

[KMWK23] M. Kepkowski, M. Machulak, et al., ”Challenges with passwordless fido2 in
an enterprise setting: A usability study”, 2023. [Online]. Available: https://ar
xiv.org/abs/2308.08096.

[Lin24] Linux Foundation, Linux foundation, Accessed: 2024-05-30, 2024. [Online].
Available: https://www.linuxfoundation.org/.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev, ”On ideal lattices and learning
with errors over rings”, in Advances in Cryptology–EUROCRYPT 2010: 29th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, French Riviera, May 30–June 3, 2010. Proceedings 29,
Springer, 2010, pp. 1–23.

[Lyu20] V. Lyubashevsky, ”Basic lattice cryptography: Encryption and fiat-shamir
signatures”, IBM Research-Zurich, Säumerstrasse, vol. 4, p. 8803, 2020.

[Mbe24] Mbed-TLS, Mbed-tls/mbedtls: An open source, portable, easy to use, readable
and flexible tls library, Apr. 2024. [Online]. Available: https://github.com/Mb
ed-TLS/mbedtls.

[MP21] M. Mosca and M. Piani, ”Quantum threat timeline report 2020”, Global Risk
Insitute, 2021.

[MR09] D. Micciancio and O. Regev, ”Lattice-based cryptography”, in Post-quantum
cryptography, Springer, 2009, pp. 147–191.

[Nat22a] National Institute of Standards and Technology, ”Nist announces first four
quantum-resistant cryptographic algorithms”, Jul. 2022. [Online]. Available:
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-fou
r-quantum-resistant-cryptographic-algorithms.

[Nat22b] National Security Agency, Announcing the commercial national security
algorithm suite 2.0, Sep. 2022. [Online]. Available: https://media.defense.gov
/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.P
DF.

[Nat22c] National Security Agency, The commercial national security algorithm suite
2.0 and quantum computing faq, Sep. 2022. [Online]. Available: https://m
edia.defense.gov/2022/Sep/07/2003071836/- 1/- 1/1/CSI_CNSA_2.0
FAQ.PDF.

https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://arxiv.org/abs/2308.08096
https://arxiv.org/abs/2308.08096
https://www.linuxfoundation.org/
https://github.com/Mbed-TLS/mbedtls
https://github.com/Mbed-TLS/mbedtls
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/1/CSI_CNSA_2.0_FAQ_.PDF
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/1/CSI_CNSA_2.0_FAQ_.PDF
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/1/CSI_CNSA_2.0_FAQ_.PDF

64 REFERENCES

[Nat23] National Institute of Standards and Technology. ”Nist to standardize encryp-
tion algorithms that can resist attack by quantum computers”. Accessed on:
November 6, 2023. (2023), [Online]. Available: https://www.nist.gov/news-ev
ents/news/2023/08/nist-standardize-encryption-algorithms-can-resist-atta
ck-quantum-computers.

[Nor24] Nordic Semiconductor, Nordicsemiconductor/zcbor: Low footprint c/c++ cbor
library and python tool providing code generation from cddl descriptions. Apr.
2024. [Online]. Available: https://github.com/NordicSemiconductor/zcbor.

[Ope] Open Quantum Safe, Crystals-dilithium. [Online]. Available: https://openqua
ntumsafe.org/liboqs/algorithms/sig/dilithium.html.

[Ope24] Open Quantum Safe, Open-quantum-safe/liboqs: C library for prototyping
and experimenting with quantum-resistant cryptography, Apr. 2024. [Online].
Available: https://github.com/open-quantum-safe/liboqs.

[Pon] Pone Biometrics, Product Description, https://offpad.ponebiometrics.com/,
Accessed: October 20, 2023.

[PSM+24] M. Prorock, O. Steele, et al., Ml-dsa for jose and cose, Jan. 2024. [Online].
Available: https://datatracker.ietf.org/doc/draft-ietf-cose-dilithium/.

[SAT24] G. Selander, D. Atkins, and S. Turner, Cbor object signing and encryption
(cose), Apr. 2024. [Online]. Available: https://www.iana.org/assignments/cos
e/cose.xhtml#algorithms.

[Sch17a] J. Schaad, Rfc 8152: Cbor object signing and encryption (cose), Jul. 2017.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc8152#section-1
3.1.

[Sch17b] J. Schaad, Rfc 8152: Cbor object signing and encryption (cose), Jul. 2017.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc8152#section-8
.1.

[SH23] T. Silde and T. Hagen, ”Secure authentication with fido, biometrics and
security keys”, in Sikkerhetsfestivalen 2023, Received on: Date (September 1,
2023), 2023.

[Sho99] P. W. Shor, ”Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer”, SIAM review, vol. 41, no. 2, pp. 303–332,
1999.

[SSKC14] M. A. Sasse, M. Steves, et al., ”The great authentication fatigue – and how
to overcome it”, in Cross-Cultural Design, P. L. P. Rau, Ed., Cham: Springer
International Publishing, 2014, pp. 228–239.

[Tak22] D. Taku. ”Beware mfa fatigue”. Accessed on: October 22, 2023. (2022),
[Online]. Available: https://www.rsa.com/multi-factor-authentication/bewar
e-mfa-fatigue/.

[TSZ22] T. G. Tan, P. Szalachowski, and J. Zhou, ”Challenges of post-quantum
digital signing in real-world applications: A survey”, International Journal of
Information Security, vol. 21, no. 4, pp. 937–952, 2022.

https://www.nist.gov/news-events/news/2023/08/nist-standardize-encryption-algorithms-can-resist-attack-quantum-computers
https://www.nist.gov/news-events/news/2023/08/nist-standardize-encryption-algorithms-can-resist-attack-quantum-computers
https://www.nist.gov/news-events/news/2023/08/nist-standardize-encryption-algorithms-can-resist-attack-quantum-computers
https://github.com/NordicSemiconductor/zcbor
https://openquantumsafe.org/liboqs/algorithms/sig/dilithium.html
https://openquantumsafe.org/liboqs/algorithms/sig/dilithium.html
https://github.com/open-quantum-safe/liboqs
https://offpad.ponebiometrics.com/
https://datatracker.ietf.org/doc/draft-ietf-cose-dilithium/
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://datatracker.ietf.org/doc/html/rfc8152#section-13.1
https://datatracker.ietf.org/doc/html/rfc8152#section-13.1
https://datatracker.ietf.org/doc/html/rfc8152#section-8.1
https://datatracker.ietf.org/doc/html/rfc8152#section-8.1
https://www.rsa.com/multi-factor-authentication/beware-mfa-fatigue/
https://www.rsa.com/multi-factor-authentication/beware-mfa-fatigue/

REFERENCES 65

[Uni24] United Nations, Infrastructure and industrialization - united nations sustain-
able development, Accessed: 2024-05-27, 2024. [Online]. Available: https://ww
w.un.org/sustainabledevelopment/infrastructure-industrialization/.

[Web23] WebAuthn. ”Introducing public key cryptography and web authentication
(webauthn)”. Accessed on: November 1, 2023. (2023), [Online]. Available:
https://webauthn.guide/.

[Wor22] World Wide Web Consortium. ”Web authentication: An api for accessing
public key credentials - level 2”. Accessed on: Sunday 9th June, 2024. (2022),
[Online]. Available: https://www.w3.org/TR/webauthn-2/.

[Yub23] Yubico. ”Solutions”. Accessed on: October 28, 2023. (2023), [Online]. Available:
https://www.yubico.com/solutions/.

[Yub24a] Yubico. ”Webauthn client authentication”. Accessed on: February 7, 2024.
(2024), [Online]. Available: https://developers.yubico.com/WebAuthn/Web
Authn_Developer_Guide/WebAuthn_Client_Authentication.html.

[Yub24b] Yubico. ”Webauthn client registration”. Accessed on: February 7, 2024. (2024),
[Online]. Available: https://developers.yubico.com/WebAuthn/WebAuthn
_Developer_Guide/WebAuthn_Client_Registration.html.

[Zep24a] Zephyr Project, Getting started guide, May 2024. [Online]. Available: https:
//docs.zephyrproject.org/latest/develop/getting_started/index.html.

[Zep24b] Zephyr Project, Zephyr project, Accessed: 2024-02-30, 2024. [Online]. Available:
https://www.zephyrproject.org/.

[Øde24] A. T. Ødegaard, Nsms kryptografiske anbefalinger, Mar. 2024. [Online]. Avail-
able: https://nsm.no/fagomrader/digital-sikkerhet/kryptosikkerhet/kryptog
rafiske-anbefalinger.

https://www.un.org/sustainabledevelopment/infrastructure-industrialization/
https://www.un.org/sustainabledevelopment/infrastructure-industrialization/
https://webauthn.guide/
https://www.w3.org/TR/webauthn-2/
https://www.yubico.com/solutions/
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/WebAuthn_Client_Authentication.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/WebAuthn_Client_Authentication.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/WebAuthn_Client_Registration.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/WebAuthn_Client_Registration.html
https://docs.zephyrproject.org/latest/develop/getting_started/index.html
https://docs.zephyrproject.org/latest/develop/getting_started/index.html
https://www.zephyrproject.org/
https://nsm.no/fagomrader/digital-sikkerhet/kryptosikkerhet/kryptografiske-anbefalinger
https://nsm.no/fagomrader/digital-sikkerhet/kryptosikkerhet/kryptografiske-anbefalinger

AppendixABenchmarks

A.1 Key Generation Times

Table A.1: Key generation times (in ms) for the different algorithms. Here,
Dil-2 = Dilithium-2, Fal-512 = Falcon-512.

Iteration ES256 Dil-2 Fal-512 Hybrid (ES256/Dil-2) Hybrid (ES256/Fal-512)
1 939.6 48.6 2931.4 996.4 7350.6
2 941.0 48.3 4148.2 996.1 3367.2
3 940.8 49.4 3980.2 995.5 4241.9
4 940.4 48.6 4199.7 996.6 5881.3
5 942.2 48.6 3050.4 997.0 6028.6
6 941.3 48.6 4436.6 996.9 4595.1
7 938.6 49.3 4319.6 995.2 5736.6
8 939.9 48.2 3100.5 995.3 3625.6
9 940.7 47.0 4034.4 995.7 5097.4
10 941.8 49.4 3558.3 994.6 7112.5
11 942.6 47.9 2695.0 994.1 5028.0
12 938.8 47.5 3337.3 995.0 3886.9
13 938.2 49.0 7682.0 997.5 5815.2
14 941.6 48.6 2576.5 998.1 3626.3
15 940.9 48.2 2577.0 994.2 7309.5
16 941.5 49.3 3507.3 995.6 4649.7
17 941.6 48.6 2931.5 997.2 3745.1
18 939.9 48.6 6973.1 994.8 3624.3
19 938.2 47.8 5484.4 997.4 5147.5
20 940.7 49.0 2576.6 996.8 3366.6
21 942.6 48.2 5468.9 996.5 12955.2
22 938.4 48.2 2695.0 996.5 4620.6
23 940.7 47.1 3286.3 996.9 5668.8
24 940.6 49.0 4910.0 995.2 7374.4

Continued on next page

67

68 A. BENCHMARKS

Table A.1 – continued from previous page
Iteration ES256 Dil-2 Fal-512 Hybrid (ES256/Dil-2) Hybrid (ES256/Fal-512)
25 941.8 49.4 5247.9 998.2 3363.9
26 939.8 48.9 12133.9 994.0 3745.3
27 939.9 47.8 5247.9 994.9 3598.4
28 940.2 49.0 4266.1 996.8 7898.5
29 940.7 48.6 2813.0 993.1 6547.9
30 941.2 48.6 2695.0 996.2 3364.3
31 939.9 49.0 3623.9 993.0 5883.3
32 938.0 49.3 3454.8 996.6 4123.4
33 940.2 48.5 10050.5 997.5 3746.5
34 941.2 48.6 3152.4 995.4 8420.2
35 940.8 47.8 5703.4 994.8 4794.3
36 938.4 48.2 3152.3 995.2 4505.4
37 941.0 48.6 2695.1 996.0 9327.6
38 939.3 49.0 7261.6 999.6 6234.7
39 939.1 49.7 3963.7 996.1 7115.8
40 938.9 48.6 2577.0 995.4 3889.0
41 940.0 47.8 3675.8 997.8 3625.2
42 939.7 48.6 2577.0 996.8 6261.1
43 940.8 48.6 2577.0 995.4 4007.6
44 939.3 48.5 8952.1 996.5 8632.4
45 939.3 47.8 2576.6 996.3 4100.4
46 940.4 48.2 3218.9 995.4 4623.3
47 937.4 48.2 3964.1 997.5 4624.4
48 940.7 48.3 5028.5 997.7 5002.4
49 939.2 48.2 2576.9 997.3 4909.9
50 940.5 49.0 5873.4 995.9 4650.5

A.2 Signing Times

Table A.2: Signature generation times (in ms) for the different algorithms.

Iteration ES256 Dil-2 Fal-512 Hybrid (ES256/Dil-2) Hybrid (ES256/Fal-512)
1 918.2 128.6 1061.7 982.3 2072.0
2 919.1 105.3 1058.0 1114.5 2071.3
3 920.5 231.1 1063.1 1022.3 2071.6
4 920.6 262.5 1062.7 1003.0 2069.4
5 919.8 128.5 1058.0 1051.4 2071.2
6 920.9 105.4 1057.1 1051.9 2071.6
7 918.7 64.3 1057.7 1050.7 2070.2

Continued on next page

A.2. SIGNING TIMES 69

Table A.2 – continued from previous page
Iteration ES256 Dil-2 Fal-512 Hybrid (ES256/Dil-2) Hybrid (ES256/Fal-512)
8 920.6 282.9 1057.1 983.7 2072.0
9 918.9 149.1 1059.4 1051.8 2071.7
10 921.8 175.0 1057.8 983.7 2072.1
11 920.5 64.3 1058.9 1064.5 2074.1
12 922.7 198.2 1060.6 982.4 2066.4
13 922.2 64.4 1059.4 1264.8 2069.8
14 918.4 192.8 1060.6 981.7 2071.6
15 922.1 87.7 1065.3 1022.5 2070.1
16 921.2 321.3 1058.6 1048.4 2072.0
17 920.4 64.3 1057.2 1110.7 2068.2
18 918.6 110.8 1062.6 986.2 2069.2
19 920.2 233.7 1058.9 1092.7 2067.8
20 920.4 128.6 1061.5 984.4 2069.6
21 920.0 87.5 1062.7 1066.2 2067.7
22 920.3 105.2 1064.2 1004.9 2076.7
23 918.9 190.0 1055.6 1026.1 2073.0
24 919.6 198.2 1058.2 1048.3 2072.2
25 922.0 64.3 1056.5 1163.9 2070.9
26 919.5 84.8 1056.5 982.8 2069.9
27 919.2 64.4 1058.1 1005.3 2073.2
28 917.7 64.3 1056.4 984.0 2069.7
29 924.4 84.9 1059.6 1005.0 2072.5
30 918.0 303.6 1055.4 1091.1 2074.8
31 919.6 84.9 1058.5 984.0 2074.6
32 918.0 84.8 1059.0 1154.0 2069.3
33 922.0 64.3 1062.3 1047.7 2066.3
34 921.3 64.4 1061.6 1002.4 2071.1
35 920.7 84.8 1064.5 983.4 2072.0
36 919.4 131.3 1060.8 1094.3 2071.8
37 920.4 108.1 1058.2 1247.6 2076.0
38 919.3 110.8 1058.2 1007.6 2072.6
39 919.4 131.4 1060.4 1068.9 2073.2
40 918.6 105.3 1061.7 1007.2 2071.7
41 920.3 64.3 1058.6 1004.2 2072.0
42 921.0 131.1 1060.1 1072.8 2072.4
43 919.9 175.1 1058.9 1072.1 2073.1
44 919.3 64.3 1060.7 1090.7 2072.3
45 921.7 108.2 1060.0 982.6 2072.8
46 920.5 128.5 1059.9 1218.0 2068.4

Continued on next page

70 A. BENCHMARKS

Table A.2 – continued from previous page
Iteration ES256 Dil-2 Fal-512 Hybrid (ES256/Dil-2) Hybrid (ES256/Fal-512)
47 918.3 64.4 1060.6 1002.3 2066.2
48 918.8 172.3 1061.8 1089.7 2071.0
49 920.6 64.4 1053.5 1066.1 2070.8
50 921.5 333.5 1059.5 1004.9 2070.8

A.3 Signature Sizes

Table A.3: Signature sizes (in bytes) for ES256 and Falcon-512, the only two
composite algorithms in this work with varying signature sizes.

Iteration ES256 Falcon-512
1 71 657
2 71 655
3 71 658
4 72 660
5 72 652
6 71 658
7 71 657
8 70 660
9 71 657
10 70 658
11 72 652
12 71 653
13 71 652
14 71 653
15 72 652
16 71 657
17 71 656
18 72 654
19 71 657
20 71 657
21 71 655
22 72 657
23 71 657
24 71 652
25 72 656
26 71 655
27 72 657
28 71 659

Continued on next page

A.3. SIGNATURE SIZES 71

Table A.3 – continued from previous page
Iteration ES256 Falcon-512
29 72 654
30 71 654
31 70 652
32 70 656
33 70 655
34 71 654
35 71 653
36 72 659
37 72 655
38 72 654
39 70 654
40 70 655
41 70 659
42 71 652
43 71 657
44 71 656
45 71 651
46 71 652
47 71 657
48 70 654
49 71 653
50 71 653

	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Motivation
	Research Scope
	Limitations
	Research Questions
	Contribution
	Related Work
	NIST Standardization Work
	Hybrid Signatures
	Provable PQC Security in FIDO2

	Outline

	Background
	The OFFPAD
	Overview of the OFFPAD
	Passkeys vs. Passwords

	FIDO2
	Overview of FIDO2
	Terminology
	CTAP
	WebAuthn
	Registration Procedure
	Authentication Procedure

	Digital Signatures and Dilithium
	Introduction to Digital Signatures
	Lattice Cryptography and Short Integer Solution
	The Dilithium Algorithm

	Methodology
	Overview
	Implementation Steps
	Tools and Resources
	STM32 Nucleo-64 Development Board
	Zephyr OS
	C Programming Language
	FIDO2 Testing Server
	Libraries

	Performance Measuring

	Proposed Solution
	Requirements
	Architecture
	Transmission and Reception of Data
	UART
	Data Reception
	Data Transmission

	Concise Binary Object Representation (CBOR)
	CBOR Encoding and Decoding

	CTAP Commands
	High-level Overview
	authenticatorGetInfo
	authenticatorMakeCredential
	authenticatorGetAssertion

	Performance and Discussion
	Performance
	Discussion
	Hybrid vs. Pure PQC
	Hybrid Constructions
	Performance Trade-offs Between Algorithms
	Secure Elements and Side-Channel Attacks
	Challenges for FIDO2
	Relevance to the UN Sustainable Development Goals

	Conclusion and Future Work
	Research Questions
	Conclusion
	Future Work
	HID Implementation
	Bluetooth
	Implementing and Attacking Hybrid Constructions

	References
	Benchmarks
	Key Generation Times
	Signing Times
	Signature Sizes

